

LunarG 2024 Ecosystem Survey Report
End-of-Year Progress Report

28-January-2025

Executive Summary

Methodology:

● LunarG developed this Vulkan ecosystem survey with input from Khronos developer
relations and Google. The purpose is to gauge the Vulkan community's use of and
satisfaction with the current Vulkan ecosystem.

● It was attempted to reach as many Vulkan developers as possible -- both SDK users and
non-SDK users. The survey was advertised on Twitter, Reddit, LinkedIn, the Khronos
Vulkan slack channel, Vulkan Discord, and sent directly to 13,000+ recipients of the
LunarG Vulkan SDK mailing list. It was amplified by Khronos on their twitter account and
newsletter mailings as well.

● All comments from open-ended questions are included in this report (at the end of the
report), regardless if they are repeated. This helps you see the frequency of certain types
of feedback.

Highlights:

● There were 258 respondents.
● 47% of the respondents use Vulkan for commercial purposes. 52% of the respondents

were self-studying Vulkan as part of a personal project or an Academic environment
(non-commercial). Throughout the report, the data is shown for Non-commercial and
Commercial developers, side by side.

LunarG 2024 Ecosystem Survey Results 1

● 70% of the respondents are regular, advanced, or expert Vulkan developers. 30% are
basic or beginner developers. Hence the feedback is coming from a more experienced
population.

● Both macOS and Android as a target of applications have more commercial developers
targeting these platforms than non-commercial developers. This is a change from last
year where more non-commercial developers were targeting those platforms.

● Some Year over Year insights:
○ Windows 11 has surpassed Windows 10 as a target platform for applications and

as a development environment.
○ Compared to the previous year's survey, the number of folks who have released

their Vulkan application for public use has increased from 36% to 42%
○ glslangValidator (glsl->SPIR-V) or shaderc (glsls->SPIR-V) remains the most used

front end from which to generate SPIR-V. This is the same as last year.
■ More commercial developers are using DXC-> SPIR-V or glslangValidator

(HLSL->SPIR-V) than non-commercial developers.
● Validation Layer themes:

○ People rely on the validation layer and are satisfied and happy we keep making it
better

■ More people are trying to fix their validation errors in their application and
trust there are no bugs in the validation layer

■ Most people report issues to github (instead of just ignoring it). This is
because we are responsive to the github issues.

■ Performance is an issue primarily for the non-hobbyist
■ Best Practices can be a lot of spam. Core problem is that we are not

investing in defining its scope, role, and improving it.
■ DebugPrintF is used a lot, but has not been maintained at the same level

as GPU-AV recently.
■ People really rely upon synchronization validation. The hard work from

LunarG investments is greatly appreciated. But we still have a lot more to
do to fill out the functionality and help with performance.

● Timeline semaphore is in high demand.
■ Error messages can be very verbose, poorly formatted, or poorly worded.

○ Continue to increase validation layer coverage
■ Specific complaints about the ray tracing extension missing a lot of

validation.
● Specific complaints about mesh shaders not having required spirv-tools validation:

https://github.com/KhronosGroup/SPIRV-Tools/issues/4919
○ "More SPIRV validation. For example the EXT_mesh_shader validation in

spirv-tools is not complete and hasn't progressed for months. Generally the
spirv-val seems abandoned"

○ LunarG comment: We have brought this to the attention of the responsible
parties and development is resuming.

LunarG 2024 Ecosystem Survey Results 2

https://github.com/KhronosGroup/SPIRV-Tools/issues/4919

○ End of year update: The development did stall and with some encouragement,
good progress has been made again. There was a significant amount of
validation within the SPIR-V validator completed. There is still remaining
validation in the ValidationLayer to be done (within GPU-AV). See issue 9183

● Continued concerns about the shader toolchain (better options, next generation
languages needed, DXC has a complicated code base with bugs, need to improve HLSL
support for Vulkan).

○ End of year update: Khronos has launched another choice for your shader
language and compilation needs. "Khronos Group Launches Slang Initiative,
Hosting Open Source Compiler Contributed by NVIDIA. Advanced language
features enhance GPU shader development productivity and portability. Open
governance encourages broad industry collaboration."
https://www.khronos.org/news/press/khronos-group-launches-slang-initiative-ho
sting-open-source-compiler-contributed-by-nvidia?es_id=866c0bb2b0

● Continued concerns about the complexity of the Vulkan API (The Khronos Vulkan
working group has access to the feedback data)

Potential actions being considered for the year to come

● Validation layers.
○ Continue GitHub issue responsiveness and filling out coverage
○ Continue improving validation layer error messages.
○ DebugPrintf needs maintenance and improvements
○ Best Practices needs improvements
○ Fill out more functionality for synchronization validation (timeline semaphore)

■ End of Year Update: Synchronization validation for the
VK_KHR_timeline_semaphore extension has been completed and was
released in the 1.3.296.0 SDK (October 2024)

● SDK additions for consideration
○ Make Windows 11 support official (add it to CI across repositories and test with

SDK)
■ End of Year Update:

● Windows 11 configurations have been added to many of the
repositories included in the SDK and is running in the LunarG CI
summenvironment on a regular basis.

● The SDK release testing process has added Windows 11
configurations to the test matrix.

● As such, even though it worked before, we can now indicate that
Windows 11 support for the SDK is official.

○ Add GLFW
○ Add an SDK for ARM64 Windows and Linux

■ End of Year Update:

LunarG 2024 Ecosystem Survey Results 3

https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/9183
https://www.khronos.org/news/press/khronos-group-launches-slang-initiative-hosting-open-source-compiler-contributed-by-nvidia?es_id=866c0bb2b0
https://www.khronos.org/news/press/khronos-group-launches-slang-initiative-hosting-open-source-compiler-contributed-by-nvidia?es_id=866c0bb2b0

● A Windows 11 on ARM SDK was released with the 1.3.290.0 SDK
(July, 2024)

● For Linux users wanting an ARM solution, they can use the Linux
tarball SDK and rebuild it for ARM using the vulkansdk script

● Tooling improvements for consideration
○ Better support for ray tracing debugging (RenderDoc, validation layers,

GFXReconstruct, …)
○ Have validation layer support for a new API available with the API release (or at

least much more quickly)
■ Vulkan Working Group comment: The workflow for an API today is

specification and CTS first, validation layer development 2nd. It is typical
that the validation layer development by the working group doesn't begin
until after the API has gone public. The working group is in the process of
modifying their workflows to require validation layer development to
happen sooner for a new API.

■ End of Year Update: The working group process has been modified to
require validation layer support coincident (or within a couple weeks of
release) for any new extensions.

LunarG 2024 Ecosystem Survey Results 4

LunarG 2024 Ecosystem Survey Report 1

Executive Summary 1
Methodology: 1
Highlights: 1
Potential actions being considered for the year to come 3

Where did you hear about this survey? 7
What type of Vulkan developer are you? 8
How experienced of a Vulkan Developer are you? 9
Your development is for what type of use case? (check all that apply) 10
What are the targets of your Vulkan application? (check all that apply) 11
Have you released your Vulkan development project for public use? 13
If you are developing Vulkan applications for the desktop, what is your development
environment? (check all that apply) 14
If you are developing Vulkan applications for Android, what is your OS development
environment? (check all that apply) 15
Do you use the new docs.vulkan.org site? 16
Do you use the following Vulkan SDKs? (check all that apply) 18
Which of the following Vulkan layers do you use? 20
Which of the following Vulkan Tools do you use? 21
Which of the following libraries do you use for your Vulkan development? 22
What is your front end for creating SPIR-V? (check all that apply) 24
From Vulkan-Headers, which do you use for parsing the API? (check all that apply) 26
Do you use the Vulkan Profiles Toolset? 27
Which of the Vulkan Profiles toolset tools do you use? 28
If you are using the Vulkan Profiles Toolset, what are you using them for? (check all that
apply) 29
Which of the Vulkan Profiles provided in the Vulkan SDK do you use? (check all that apply)
30
Do you use the Khronos Vulkan Validation Layer (VK_LAYER_KHRONOS_validation)? 31
How often does the performance of the validation layers inhibit effective use of them? 32
If you use the Best Practices layers
(VK_VALIDATION_FEATURE_ENABLE_BEST_PRACTICES_EXT), which vendors do you
select? (check all that apply) 33
When you get many Validation Layer messages, what do you do? (check all that apply) 34
When you think you have found a bug in the Validation Layers, what do you do? (check all
that apply) 35
Do you use Debug Printf (debugPrintfEXT, GLSL_EXT_debug_printf,
VK_VALIDATION_FEATURE_ENABLE_DEBUG_PRINTF_EXT)? 37
Do you use GPU Assisted Validation (GPU-AV, GPU-Assisted,
VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT) 39
Do you use Synchronization Validation
(VK_VALIDATION_FEATURE_ENABLE_SYNCHRONIZATION_VALIDATION_EXT)? 40

LunarG 2024 Ecosystem Survey Results 5

Do you use GFXReconstruct? 42
Which version of GFXReconstruct do you use? (check all that apply) 43
If you use GFXReconstruct, rank the following possible new GFXReconstruct features in
terms of usefulness for your projects: (1 = Highest, 10 = Lowest) 44
How satisfied are you with the reliability and quality of GFXReconstruct on desktop GPUs?
45
How satisfied are you with the reliability and quality of GFXReconstruct on Android? 46
What improvements or enhancements would you like to have added to GFXReconstruct? 47
Is Android a target of your application development? 48
If you believe you have found a Vulkan driver bug on Android, what do you do? (check all
that apply) 49
If you do not report a driver bug that you found on Android, why not? (check all that apply) 50
When you need to debug a rendering problem on Android, what tool(s) do you use? (check
all that apply) 51
What graphics performance/profiling tools do you use on Android? (check all that apply) 52
Do you use MoltenVK? 53
Rank order the importance of the following Vulkan features being added to MoltenVK (1 =
Highest, 9 = Lowest) 54
List any Vulkan extensions that you would like to see added to MoltenVK 55

Open-Ended Feedback 56
Open-ended Feedback : Validation Layer 57
Open-ended Feedback : Vulkan SDK 63
Open-ended Feedback : Profiles Toolset 68
Open-ended Feedback : RenderDoc 70
Open-ended Feedback : High level Shader Language / Compilers 71
Open-ended Feedback : Developer Tools 74
Open-ended Feedback : GPU crashes/hangs 76
Open-ended Feedback : Android 77
Open-ended Feedback : MoltenVK 78
Open-ended Feedback : Vulkan Ecosystem Documentation 79
Open-ended Feedback : Vulkan Samples 84
Open-ended Feedback : Vulkan API 88
Open-ended Feedback : Other 91
Open-ended Feedback : Thank You 93

LunarG 2024 Ecosystem Survey Results 6

Where did you hear about this survey?

LunarG 2024 Ecosystem Survey Results 7

What type of Vulkan developer are you?

Other:

● For open source project (http://nice.graphics)
● Open Source Scene Graph developer

Developers for commercial purposes are 47%. Developers for personal projects or academic
purposes is 52%.

LunarG 2024 Ecosystem Survey Results 8

How experienced of a Vulkan Developer are you?

70% or respondents are Regular, Advanced, or Expert developers.
30% are Basic or Beginner developers.
More of the commercial developers have higher levels of Vulkan experience.

LunarG 2024 Ecosystem Survey Results 9

Your development is for what type of use case? (check all
that apply)

Other:

1. Language bindings
2. CAD
3. Metaverse
4. Vulkan Layers
5. Ray Tracing based DCC tools
6. Media and Entertainment
7. Web browser, Dawn
8. Video coding acceleration!
9. VulkanSceneGraph
10. Ki
11. Media server
12. 3D map for navigator
13. Scientific visualization
14. Medical data visualization
15. VulkanSceneGraph

LunarG 2024 Ecosystem Survey Results 10

What are the targets of your Vulkan application? (check
all that apply)

Other:

● headless linux
● Custom RISC-V
● non-desktop Linux
● RTOS
● QNX
● BSD Unix(GhostBSD)
● Open Harmony
● macOS Apple Silicon (using MoltenVK)
● I've designed the system to be able to support many platforms, but I haven't dropped or

tested any but windows.

Observation: Much of the CI on the SDK repositories is not for Windows 11. However the SDK
and repositories are working fine on Windows11. Probably a good idea to begin upgrading test
suites to run on Windows 11 in the SDK repositories.
End of Year Update: Windows 11 has been installed on most of the SDK repositories and a
Windows 11 test configuration has been added to the SDK release testing.

LunarG 2024 Ecosystem Survey Results 11

LunarG 2024 Ecosystem Survey Results 12

Have you released your Vulkan development project for
public use?

Other:

● Released small tools as open source but not the main project
● No, but I would if given permission
● One project is on GitHub, the other unreleased without any plans at the moment
● No, unknown if it will be released. If it is, it will probably be open source.
● No and I did not think about that
● No plans thus far as no project has reached any stage where it would be useful -

everything is mostly a prototype for studying.
● Not yet, and we shall see

Percentage of release content: 42% (36% last year, 28% year before that)
Percentage of content planned to be released: 41%
Percentage on content not to be released: 14%

LunarG 2024 Ecosystem Survey Results 13

If you are developing Vulkan applications for the desktop,
what is your development environment? (check all that
apply)

Other:

● Wine
● Linux ARM64
● not this part

Still a lot of Windows 10 development environments, especially for commercial developers.

LunarG 2024 Ecosystem Survey Results 14

If you are developing Vulkan applications for Android,
what is your OS development environment? (check all
that apply)

Other:

● not applicable
● not this part

LunarG 2024 Ecosystem Survey Results 15

Do you use the new docs.vulkan.org site?

Reasons why you don't us it (please specify)

1. I mostly use the PDF spec
2. Google searches of API functions brought me to registry.khronos.org. I will give the new

site a try.
3. It’s not easy to navigate. There should be more examples depending on what you want to

achieve with accompanied code and most importantly an image of the output. More
visual examples in general

4. I still use with the single-file vkspec.html, that one works perfectly well for all of my
usecases.

5. When I need to look up references for a certain struct or function description, typing its
name in the search engine usually gives registry.khronos.org as the first result.

6. I'm used to https://registry.khronos.org/vulkan/specs/ and it comes as the first result
when googling

7. I tend to Google extension names, and the first result is always to the manpages on
registry.khronos.org with internal links that point to the full spec.

8. I don't use it directly, because generally https://registry.khronos.org/vulkan/specs
presents it in a more compact and direct way for my uses

9. Keep forgetting and not in my "goto" bookmarks. I will fix that.
10. I forget :)
11. I think I used it when it had better navigation

LunarG 2024 Ecosystem Survey Results 16

12. It doesn't come up first on google, and it doesn't really seem different than the other
vulkan spec info.

13. I am using pdf doc. This way, I do not need internet connection. The docs.vulkan.org
does not seem to bring any benefits over pdf yet. At least I am not aware of any.

14. I use the SPIR-V and Vulkan specs in PDF form because of the excellent performance
over the HTML versions

15. too much bloat when coming from the old spec docs
16. Just goodle old spec when needed some-thing specific
17. I simply Google
18. I'm still using the https://registry.khronos.org/vulkan/specs/1.3-extensions/html/ site,

haven't tried the new site yet.
19. Was not referenced in vulkan-tutorials.com, vkguide.dev, or in the Vulkan discord server

as a resource for beginners..
20. Many existing links to old site
21. i only needed to look up something quick so far and google still shows the old

documentation at the top
22. Currently the Vk dev work is on hold
23. I still use the PDF out of habit. I may use it in the future.
24. Can't access new site from Russia, but can freely access vulkan.org. Please fix. :(
25. I'm confortable with the spec
26. It is harder to find specific structs that are in the spec
27. I have the habit to use the specification now, but I will probably use it more and more

with time.
28. The PDF specification works quickly regardless of internet connectivity

LunarG 2024 Ecosystem Survey Results 17

Do you use the following Vulkan SDKs? (check all that
apply)

1. I don't use the Vulkan SDK or I use the following (please specify):
2. Vulkan core
3. vulkan-devel Arch Linux packages
4. I use our own in-house SDK
5. Some mishmash of packages provided by Arch Linux and self-compiled tools as

necessary to get support for the latest extensions
6. I use the Rust crate vulkano, currently switching to ash. I did not specifically download

an SDK.
7. Debian packages
8. arch distro packages
9. vulkan-devel on Arch Linux
10. arch linux packages
11. I install the offical packages in arch repos
12. arch packages
13. what?!
14. The Vulkan tools are built from source.
15. Build components ourselves.
16. I used whatever is available for Android and/or build from source

LunarG 2024 Ecosystem Survey Results 18

17. Debian packages SDK
18. debian package
19. want using it in our project
20. I'd like to use the macOS sdk but MVK never has a release that doesn't crash so i always

need to manually update mvk, fix it's source and build from there.
21. Also, there's no static loader in the macos sdk so i dont know how to make it match with

Windows' vulkan-1.lib setup.
22. Arch Linux via pacman
23. Sometimes I just use Fedora packages, e.g., vulkan-headers, vulkan-loader-devel,

vulkan-tools, vulkan-validation-layers, glslvalidator
24. Packages by the distribution
25. I get drivers and libvulkan from distro packages. SDK not as useful for non-C/C++ users

(e.g. Rust).
26. whatever is provided by the arch linux and aur if i need a bleeding-edge sdk
27. Don't use
28. I build what I want from source
29. dynamic loading
30. I build what I need from source

LunarG 2024 Ecosystem Survey Results 19

Which of the following Vulkan layers do you use?
Answered: 253
Skipped: 5

LunarG 2024 Ecosystem Survey Results 20

Which of the following Vulkan Tools do you use?
Answered: 250
Skipped: 8

Other:

1. using environment variables directly instead of vkconfig
2. RenderDoc! Nsight for profiling, Aftermath for GPU crash debugging. For Android

development I use Mali Streamline for profiling, and the VkResult tells me when the GPU
crashes

3. RenderDoc/nsight
4. RenderDoc
5. RenderDoc
6. Android Graphics Inspector (AGI) and Android's "vkjson" and RenderDoc
7. spirv-val, extensively
8. RenderDoc works fantastically well on windows and android
9. Renderdoc
10. NVidia NSight, RenderDoc
11. renderdoc, nvidia nsight graphics, pvrtexturetools

LunarG 2024 Ecosystem Survey Results 21

Which of the following libraries do you use for your
Vulkan development?
Answered: 245
Skipped: 13

Other:

1. vulkanscenegraph
2. VulkanSceneGraph
3. VulkanSceneGraph
4. VulkanSceneGraph
5. VulkanSceneGraph
6. VulkanSceneGraph
7. VulkanSceneGraph
8. VulkanSceneGraph
9. VulkanSceneGraph (https://github.com/vsg-dev/VulkanSceneGraph)
10. VulkanSceneGraph
11. glm
12. glm
13. GLM
14. glm
15. GLM
16. glm
17. vulkano

LunarG 2024 Ecosystem Survey Results 22

18. vulkano
19. Vulkano
20. Imgui
21. Dear ImGUI
22. spirv-reflect
23. spirv-reflect
24. libKTX
25. KTX
26. libktx
27. Tracy
28. Slang (shading language),
29. ash
30. Rust: ash,
31. Ash
32. Ash (in Rust)
33. ash_window
34. lightwieght vk
35. Winit
36. winit
37. winit (rust)
38. github.com/Dav1dde/glad (webservice for glad2)
39. vuk
40. I don't use a specific library.
41. VSG
42. My own engine
43. Silk.NET
44. I experimented with vulkan-HPP and found it to have multiple major problems. The

biggest was that it seriously impacted build times and was painful to debug with.
45. unreleased spirv parser/reflection tool.
46. GLFW/SDL in C++ land.
47. spirvcross
48. tinygltf
49. Own libraries for learning purpose
50. stb
51. WINAPI
52. glad
53. XCB, win32

LunarG 2024 Ecosystem Survey Results 23

What is your front end for creating SPIR-V? (check all that
apply)
Answered: 243
Skipped: 15

Other:

1. Custom C++ frontend -> LLVMIR -> MLIR -> SPIR-V
2. I don’t know about that
3. vulkano_shaders:shader!
4. naga
5. Naga (wgsl->SPIR-V)
6. NZSL
7. Tint (WGSL-> SPIR-V)
8. Tint (WGSL->SPIR-V)
9. WGSL
10. ANGLE (glsl->SPIR-V)
11. I'm the maintainer of shady and Vcc
12. clspv
13. self-built
14. also use spirv-reflect to extract cpu-facing structure definitions for UBOs, PCBs, vertiex

formats, and specialization constants.
15. rust-gpu (partially)

LunarG 2024 Ecosystem Survey Results 24

16. rust-gpu
17. Naga
18. ShaderWriter
19. SparkSL
20. Custom WIP shading language
21. My own compiler
22. glslc is what I use.
23. VulkanSceneGraph uses the glsang library to compile GLSL to SPIR-V at runtime when

required.
24. Very interested in potentially adopting vcc (https://xol.io/blah/introducing-vcc/) as it

matures...
25. I also use spirv-cross-reflect to extract shader bindings, etc

LunarG 2024 Ecosystem Survey Results 25

From Vulkan-Headers, which do you use for parsing the
API? (check all that apply)
Answered: 236
Skipped: 22

Please specify what you do use (if any)

1. My own
2. I search the core.h and .hpp files.
3. so vulkan.hpp which is generated for us
4. vulkan.hpp
5. I use spirv.core.grammar.json
6. use volk, doesn't think how exactly ot works
7. spirv-headers specs for auto-generating a parser/reflection library
8. Ash
9. I use Vulkan_core with other platform VkSurface specific
10. i use the ones that come with the repo, so i dont generate them myself
11. CMake 3.21+ Linking for headers from SDK and VK_NO_PROTOTYPES
12. I don't know what this does.

LunarG 2024 Ecosystem Survey Results 26

Do you use the Vulkan Profiles Toolset?
Answered: 252
Skipped: 6

Many people are not yet using the profiles toolset. Slightly more commercial developers are
familiar with the tool and using it.

LunarG 2024 Ecosystem Survey Results 27

Which of the Vulkan Profiles toolset tools do you use?
Answered: 23
Skipped: 235

As suspected, for those using the Profiles toolset, the Profiles Layer is used more heavily than
the Profiles API Library.

LunarG 2024 Ecosystem Survey Results 28

If you are using the Vulkan Profiles Toolset, what are you
using them for? (check all that apply)
Answered: 20
Skipped: 238

Other:

1. I'm using the Android Roadmap 2021 profile while developing on desktop to make sure I
don't accidentally use a capability that my target market doesn't have

2. Test generation (I actually have somebody else use it for me:-)

LunarG 2024 Ecosystem Survey Results 29

Which of the Vulkan Profiles provided in the Vulkan SDK
do you use? (check all that apply)
Answered: 21
Skipped: 237

LunarG 2024 Ecosystem Survey Results 30

Do you use the Khronos Vulkan Validation Layer
(VK_LAYER_KHRONOS_validation)?

LunarG 2024 Ecosystem Survey Results 31

How often does the performance of the validation layers
inhibit effective use of them?
Answered: 224
Skipped: 34

1. Game-like app. FPS drops from ~120 to 15.
2. There is sometimes something that triggers an error in the validation layers when ImGui

is integrated with a basic renderer such as the ine from vulkan-tutorial
3. Enshrouded
4. Debugging a Vulkan layer that runs on top of a video game
5. When the extension is attached to Android devices
6. Even on a high-end system (RTX 3080 + Ryzen 9 5950X + 64GB RAM) rendering multiple

instances of meshes or different meshes slows down very quickly. But debug mode is
required for any basic debugging, and validation layers are also basically required for any
development of Vulkan applications. So it gets difficult to properly develop in those
situations.

7. It's mainly annoying that the developers of SteamVR have not fixed the validation errors
in their application for years, such that their validation errors get spammed in the log
whenever I enable the validation layers in my VR application. (Oh, there was a
VK_LAYER_DUPLICATE_MESSAGE_LIMIT? I never knew about that!)

LunarG 2024 Ecosystem Survey Results 32

If you use the Best Practices layers
(VK_VALIDATION_FEATURE_ENABLE_BEST_PRACTICES_E
XT), which vendors do you select? (check all that apply)
Answered: 169
Skipped: 89

LunarG 2024 Ecosystem Survey Results 33

When you get many Validation Layer messages, what do
you do? (check all that apply)
Answered: 221
Skipped: 37

Other:

1. I'll try to fix one or two, run my program again, fix one or two of any remaining messages,
run my program again...

2. I rely on the validation layers to catch errors in automated unit tests. If they fail, code
can't be submitted.

3. Some messages we decide to ignore because they are either 1) known bugs in our code
that will take longer to fix 2) bugs in the VVLs 3) things that are technically disallowed
but work in practice (looking at the lack of STORE_OP_NONE)

4. Log everything to a file and search it
5. Panic and run to the nearest corner of the room and cry against the wall because it

probably has something to do with synchronization.
6. some messages are due to driver bugs or non-compliance (e.g. linux soft driver, WSL2

driver) and need custom filtering
7. Fix them after completing a feature, if not important at the moment
8. Fix ERRORS but ignore WARNINGS
9. Fix them once a feature is completed on the local device.
10. reducde log level

LunarG 2024 Ecosystem Survey Results 34

When you think you have found a bug in the Validation
Layers, what do you do? (check all that apply)
Answered: 187
Skipped: 71

Other:

1. Curse and swear!
2. I haven’t encountered one yet
3. I've never found a bug in the validation layers
4. The few times this occured there were already newer versions with fixes.
5. I also sometimes try to fix the bug.
6. Contact my LunarG engineer colleagues
7. Unable to understand a bug if there was one. I am a beginner.
8. Mark them in our code-base to research/understand better why it would be a bug. In the

future I will reach out more via discord to get earlier feedback.
9. Remember that I have not and continue looking for my bug
10. Pray to the all mighty graphics gods.
11. Have not found any
12. Create pull request for fix

it.https://github.com/KhronosGroup/Vulkan-ValidationLayers/commits?author=Andreyo
gld3d

13. Not that confident lol
14. Haven't needed to yet :-)

LunarG 2024 Ecosystem Survey Results 35

15. Hasn't occured.

LunarG 2024 Ecosystem Survey Results 36

Do you use Debug Printf (debugPrintfEXT,
GLSL_EXT_debug_printf,
VK_VALIDATION_FEATURE_ENABLE_DEBUG_PRINTF_EXT
)?
Answered: 219
Skipped:39

Here's why not:

1. Printing messages from millions of threads isn't very useful. Proper debug tools are
needed (especially for compute shaders with raytracing/ray queries extensions)

2. It didn't work reliably the last time I tried. That was some significant time ago though.
3. I keep forgetting it exists tbh
4. Renderdoc
5. I use slot 0 usually, it messes how I set up my descriptor sets and usually I'd prefer an

assert over a debug_printf.
6. My applications start with a command window, then windows and then Vulkan. Debug

errors are displaced in the command window and written to a txt file.
7. I tried but it prints different values than what's actually being used in the shader i was

debugging.
8. it has a lot of noise, and mostly doesn't work better than a debug image.

a. Comment from LunarG: It is acknowledged that since the first release of the
debugPrintf functionality, there hasn't been additional improvements made.

LunarG 2024 Ecosystem Survey Results 37

b. End of year update:
i. GPU-AV and Debug Printf can now be used simultaneously
ii. Support for 8-bit, 16-bit and 64-bit float was added
iii. At Vulkanised 2025, see Spencer Fricke's presentation: "Debugging Your

GPU Workflow". Using debugPrintf will be covered in this presentation.
Videos of the presentations will be available.

9. My current development pipelined based on kernel_slicer solves debugging for 99%. The
rest 1% coul be solved just with traditional prontf kung-fu debugging (copy data to CPU
and print them).

10. It's not very practically useful due to the massive amount of output it generates and the
bad performance

11. https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/7178 would love to
use it but GPU-AV support is limited when you're using some extensions.

12. Tried it once, it just crashed. But that was some time ago.

LunarG 2024 Ecosystem Survey Results 38

https://vulkan.org/events/vulkanised-2025

Do you use GPU Assisted Validation (GPU-AV,
GPU-Assisted,
VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT)
Answered: 218
Skipped: 40

No, and here's why not:

1. On nvidia drivers, GPU assisted validation currently doesn't work well with
VK_EXT_descriptor_buffer.

2. Conflicts with debug printf
a. End of Year Update: GPU-AV and Debug Printf can now be used simultaneously

3. Beginner so projects are not complicated enough to require using it.
4. Not really sure what kind of errors this catches in addition to regular validation
5. https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/6025
6. Does not work with descriptor buffer, last time I checked.

LunarG 2024 Ecosystem Survey Results 39

Do you use Synchronization Validation
(VK_VALIDATION_FEATURE_ENABLE_SYNCHRONIZATION
_VALIDATION_EXT)?
Answered: 220
Skipped: 38

No, and here's why not:

1. Used to but problems with it, likely related to lack of timeline semaphore support, has
forced us to disable it for now.

a. End of Year Update: Synchronization validation for the
VK_KHR_timeline_semaphore extension has been completed and was released in
the 1.3.296.0 SDK (October 2024)

2. It's incomplete and still in development right? Last time i tried it gave false positives
anyway and didn't even do cross cmdbuffer or cross queue validation so yeah..

a. End of Year Update: In the last year, many github issues have been resolved. In
addition, synchronization validation for VK_KHR_timeline_semaphore was
implemented. If you see false positives when using synchronization validation,
please report it here: https://github.com/KhronosGroup/Vulkan-ValidationLayers

3. Beginner so projects are not complicated enough to require using it.
4. seems to work incorrectly for complex setup (multiple render threads)

LunarG 2024 Ecosystem Survey Results 40

https://github.com/KhronosGroup/Vulkan-ValidationLayers

LunarG 2024 Ecosystem Survey Results 41

Do you use GFXReconstruct?

Answered 240
Skipped 18

LunarG 2024 Ecosystem Survey Results 42

Which version of GFXReconstruct do you use? (check all
that apply)
Answered 29
Skipped 229

LunarG 2024 Ecosystem Survey Results 43

If you use GFXReconstruct, rank the following possible
new GFXReconstruct features in terms of usefulness for
your projects: (1 = Highest, 10 = Lowest)

LunarG 2024 Ecosystem Survey Results 44

How satisfied are you with the reliability and quality of
GFXReconstruct on desktop GPUs?
Answered 27
Skipped 231

Comments:

1. It was good enough to do a capture to file a bug report to MESA. Had to build from
source. No experience beyond that.

LunarG 2024 Ecosystem Survey Results 45

How satisfied are you with the reliability and quality of
GFXReconstruct on Android?
Answered 19
Skipped 239

Comments:

1. but haven't been using it much yet - so far no issues. wonder if swapchain replay bugs
are still around (those were quite annoying in vkreplay)

2. I understand there are issues
3. Haven't tried it.
4. I have only tried using it with Meta Quest 3 and had issues running replay - gave up due

to the time sink.

LunarG 2024 Ecosystem Survey Results 46

What improvements or enhancements would you like to
have added to GFXReconstruct?
Answered 7
Skipped 251

End of Year Update

This year Android stability improved significantly, especially for apps using Android
Hardware Buffer and “page_guard” memory tracking. We improved the use of
GFXReconstruct in interactive tools including performance improvements and saving
intermediate buffer contents for interactive analysis. We also merged the foundations of
portable capture and replay of ray tracing.

1. workgraphs support
2. I just want to mention that the Capture and replay of VK raytracing is almost an

impossible task because of the lack of guidance we had in terms of binding stuff to the
pipeline from day one. So now every project that is using VK RT is using raw memory
addresses to pull data into their shaders. So in order to solve this problem you'd have to
instrument the shader to see where the user is pulling the memory address and then try
to fudge it in replay. So perhaps there needs to be an api way of supplying this data into
RT pipelines.

a. End of Year Update: For the last 8 months there has been an initiative to create a
"portable raytracing" capture/replay solution. Portable raytracing means that the
device buffer device addresses, shader group handles, and acceleration
structures are tracked at capture time and translated at replay time to be device
independent. This portable tracing solution is now available in GFXReconstruct.

3. Driver compatibility and ASIC compatibility needs to improve, ex: if we captured on one
configuration replaying on other config irrespective of ASIC and drivers.

4. Life without python
5. Make a debuger with it similar to RenderDoc. Good to have more choices
6. Ray tracing often crashes
7. Make a debugger with it like renderdoc

LunarG 2024 Ecosystem Survey Results 47

Is Android a target of your application development?
Answered 236
Skipped 22

LunarG 2024 Ecosystem Survey Results 48

If you believe you have found a Vulkan driver bug on
Android, what do you do? (check all that apply)
Answered 55
Skipped 203

Other:

1. Have to workaround, as android never updates drivers
2. Report the bug to OEM/SoC vendor
3. Cry
4. look at internet
5. Ask to devs in Vulkan Android dev discord channel

LunarG 2024 Ecosystem Survey Results 49

If you do not report a driver bug that you found on
Android, why not? (check all that apply)

Answered 39
Skipped 219

Other reasons:

1. I'm shipping on a lot of phones that no longer get driver updates. Reporting bugs will
help future phones, and some current ones, but I still need to work around the bug in my
code to ship on the older phones that people are still using

2. There are too many vendors ...
3. I do report, but mostly to get advice on how to work around it - I do not expect mobile

vendors to fix the issue.

LunarG 2024 Ecosystem Survey Results 50

When you need to debug a rendering problem on Android,
what tool(s) do you use? (check all that apply)
Answered 56
Skipped 202

Other:

1. we have a custom engine with internal instrumentation and error reporting.
2. Shader printf
3. Shader printf

LunarG 2024 Ecosystem Survey Results 51

What graphics performance/profiling tools do you use on
Android? (check all that apply)

Answered 38
Skipped 220

Other:

1. vkCmdWriteTimestamp :(
2. Mali Streamline/Arm Perfomance Studio
3. performance queries, none of the above actually work
4. Mali Streamline, Snapdragon Profiler, Tracy in my own engine, Unreal Insights if using

Unreal Engine
5. Snapdragon Profiler mostly.
6. ARM profiler
7. Qcom profiler
8. RenderDoc
9. PowerVR Tune
10. Tracy
11. Snapdragon Profiler
12. Snapdragon Profiler, NSight
13. simpleperf for CPU side stuff. For GPU times, the timing on RenderDoc as a rough

estimate.

LunarG 2024 Ecosystem Survey Results 52

Do you use MoltenVK?
Answered 234
Skipped 24

LunarG 2024 Ecosystem Survey Results 53

Rank order the importance of the following Vulkan
features being added to MoltenVK (1 = Highest, 9 = Lowest)
Answered 58
Skipped 200

LunarG 2024 Ecosystem Survey Results 54

List any Vulkan extensions that you would like to see
added to MoltenVK
Answered 11
Skipped 247

1. none
2. Most of them i think
3. debugPrintfEXT
4. VK_KHR_video_queue!
5. VK_KHR_ray_tracing_pipeline
6. VK_EXT_shader_object
7. VK_KHR_ray_tracing_pipeline
8. VK_KHR_shader_maximal_reconvergence (good luck)
9. VK_KHR_indirect_draw_count
10. do not know for the moment
11. gl_DrawID is the only blocker I had getting my app running on MoltenVK.
12. VIDEO

LunarG 2024 Ecosystem Survey Results 55

Open-Ended Feedback

There were several questions in the survey asking for open-ended feedback:

1. Do you use the new docs.vulkan.org site?
2. If you use the docs.vulkan.org site, what suggestions do you have to improve the site?
3. If you use the Vulkan SDK, what suggestions do you have for the Vulkan SDK?
4. What Vulkan Samples would be most useful for Khronos to add in the future?
5. What prevents you from being effective and productive while doing your Vulkan

development?
6. When using the Vulkan Profiles toolset, what are the inhibitors for you to use them easily

or effectively?
7. How could the validation layers be improved?
8. Provide any additional feedback you would like to provide regarding MoltenVK
9. Is there anything else you would like to share?

All of the open-ended feedback in the survey resulting from these questions is compiled in this
section. Common feedback is grouped into appropriate sub-groups. No feedback is deleted,
even if it is repeated multiple times. Seeing the frequency of a feedback theme is also useful.

LunarG 2024 Ecosystem Survey Results 56

Open-ended Feedback : Validation Layer
1. Performance related

a. performance
b. Faster
c. Performance of some of the features could be better, but nothing really major

issues in current use.
d. less performance overhead; slows down test suite execution by a lot
e. perf
f. Improve performance, reduce overhead
g. Better performance

2. Error messages
a. Error messages from the validation layers are often cryptic.
b. Sub-categories for 'Best Practices' to avoid too many suggestions
c. some best-practice messages are just spam (later one was a complain on

general_layout + storage_image, as if there is an alternative)
i. Comment from LunarG: The Best Practices have not had improvements

made for some time. In addition, there still isn't clarity of what the best
practice layer should or should not be reporting.

d. Formatted for readability by humans, actual normal humans, not LunarG devs
i. Comment from LunarG: What this really means is when writing logic for a

VU it is very easy to see all the parts, but when you hit in your app, it is
hard to see what is going on with the many connected parts.... This is a
difficult problem to solve. We should keep it in mind while writing the VUs.

e. Easier to read error messages
f. Include resource names from VK_EXT_debug_utils in messages, if available.

i. End of Year Update: This has been added for GPU-AV and Synchronization
Validation. There are a few spots in Core validation checks that will be
added soon.

g. with useful messages about the origin of the errors. Most of the time the
messages are completely cryptic, and this is a huge problem when you are
learning Vulkan, only when you have more experience will you be able to locate
the source of the errors.

i. Comment from LunarG: The validation layers are not able to print a Vulkan
Guide level explanation for every error. It is part of the learning curve
unfortunately. You can use tools such as apidump or GFXReconstruct to
see the sequence of calls your application made to help debug them.

LunarG 2024 Ecosystem Survey Results 57

h. More readable error messages or links to an explanatory page for error
messages that don't track back to the specs.

i. Possibly some suggestions on what the expected values are. The validation layer
logs are particularly verbose so it is difficult to parse what parameter is incorrect
and what the value should / should not be.

i. Comment from LunarG: The validation layer can't know what you intended
to do and therefore what would be the expected values.

j. Easier readable messages
k. Hard to track down what is generating validation errors
l. The single most annoying thing I encounter is URLs that I get back from tooling

that reference the primary vulkan specification, which takes a long time to load
and can bog down browser performance. It would be nice if there were an
extension that could automatically intercept such URLs and redirect people to the
corresponding single-page version of whatever was being linked.

m. Links to full spec with long load times
i. As many of you are probably aware, the Vulkan working group has

developed an alternative form of the specification using Antora. You can
see the result here: https://docs.vulkan.org/spec/latest/index.html The
specification as generated by using Antora results in much faster load
times in your browser. The team within the working group just enabled us
with the two features we need to integrate this into the SDK version
specific specification integrated into the LunarXchange SDK
documentation (the ability to build a version of the specification for the
SDK header version, and the ability to link into the specification for a
specific VUID). SDK 1.4.304.1 will be the first SDK using the Antora build
system.

n. Messages about crashes of the instance / device are usually not helpful / need
more information

o. Combine error messages with API calls to see what call caused what msg.
p. Better output: e.g. html page, tree structure?
q. Format the messages to make them more readable
r. Other than that. a improve that formatting of validation messages would be most

welcome: UNASSIGNED-CreateInstance-status-message(INFO / SPEC):
msgNum: -2016116905 - Validation Information: [
UNASSIGNED-CreateInstance-status-message] Object 0: handle =
0x55ce13436270, type = VK_OBJECT_TYPE_INSTANCE; | MessageID =
0x87d47f57 | vkCreateInstance(): Khronos Validation Layer Active: Settings
File: Found at ~/.local/share/vulkan/settings.d/vk_layer_settings.txt specified by
VkConfig application override. Current Enables:
VK_VALIDATION_FEATURE_ENABLE_SYNCHRONIZATION_VALIDATION,
VALIDATION_CHECK_ENABLE_SYNCHRONIZATION_VALIDATION_QUEUE_SUBMI
T. Current Disables:

LunarG 2024 Ecosystem Survey Results 58

https://antora.org/
https://docs.vulkan.org/spec/latest/index.html
https://vulkan.lunarg.com/doc/sdk/1.4.304.0/windows/getting_started.html
https://vulkan.lunarg.com/doc/sdk/1.4.304.0/windows/getting_started.html

VK_VALIDATION_FEATURE_DISABLE_SHADER_VALIDATION_CACHING_EXT.
Objects: 1 [0] 0x55ce13436270, type: 1, name: NULL

s. For muted message VUIDs there should be a setting that raises them at least
once. We like to be reminded of those validation messages if we think they are a
bug (or they are a confirmed bug) but not be spammed by them (although we
want to be spammed by the non-filtered ones).

i. LunarG comment: The Vulkan Configurator has an option to limit
duplicate messages. You can set that to 1

3. Coverage
a. Bindless resource accesses in shaders are not checked, that would help us a lot

if possible. E.g. an index into a texture array comes from a push constant, but the
index is outside the arrays range.

i. End of Year Update: GPU-AV has received a lot of work this last year and
should now cover this.

b. bindless resource checks in the validation layers would be on my wishlist.
c. Support for descriptor buffers would be nice
d. improve coverage of new exensions (descriptorbuffers, timelinesem sync)
e. More support for GPU-AV
f. Feature complete to match the validation rules in the spec.
g. Focus on core validation rules starting in v1.0, v1.1, v1.2 etc. before adding rules

for new extensions or new features"
i. End of Year Update: All the core validation for 1.0, 1.1, and 1.2 should now

be complete.
h. IIRC usages of descriptor buffers is not yet validated.
i. More SPIRV validation. For example the EXT_mesh_shader validation in

spirv-tools is not complete and hasn't progressed for months. Generally the
spirv-val seems abandoned

j. More coverage. For example the spirv validation of EXT_mesh_shader is not fully
implemented and generally spirv validation doesn't see many updates

i. Comment from LunarG: These statements are correct.
https://github.com/KhronosGroup/SPIRV-Tools/issues/4919 has been open
for a long time. We will see if we can get an appropriate person from the
Vulkan working group to finish the work.

ii. End of year update: The development did stall and with some
encouragement, good progress has been made again. There was a
significant amount of validation within the SPIR-V validator completed.
There is still remaining validation in the ValidationLayer to be done (within
GPU-AV). See issue 9183

k. Also, the ray tracing extension has a lot of missing validation.
l. Raytracing validation

i. End of Year Update: All validation that can be done on the CPU (not the
GPU) has been filled out in this last year.

LunarG 2024 Ecosystem Survey Results 59

https://github.com/KhronosGroup/SPIRV-Tools/issues/4919
https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/9183

m. fix false positives in the lastest version.
4. Synchronization Validation

a. GPU assisted synchronization validation - would be nice to catch VU violations
triggered within shaders.

b. validation layers are slow. hard to figure out sync hazards. QueueSubmit
synchronization diagnostics should be improved (e.g. print debug labels of
involved resources)

c. debugging layout transition validation errors
d. Sync validation messages, they are too complex and hard to understand without

ability to break in specific places during commands recording.
i. End of Year Update: Added debug labels to error messages. Added

resource handles (buffer/image) to error messages in Submit time
validation.

e. Timeline semaphore support for synchronization validation is needed
i. End of Year Update: Synchronization validation for the

VK_KHR_timeline_semaphore extension has been completed and was
released in the 1.3.296.0 SDK (October 2024)

f. More support of Synchronization Validation with bindless is needed
g. Validation Sync error can possibly contain some suggestions, like "This situation

is likely the result of.. "
5. DebugPrintf

a. if GPU-assisted validation and Debug Printf could be used simultaneously, it
would help me sometimes.

i. End of Year Update: GPU-AV and Debug Printf can now be used
simultaneously.

b. I would like to inject debugPrintf without a need to do any changes to application
binary

c. Debug printf could have a dump pass to write all shaders to spirV or GLSL(if
provided) and provide a way to override them in second pass and inject all
needed extensions to add those printfs.

d. Separate debug printf layer from rest of validation layers if possible.
e. Want to programmatically enable debug printf only.

i. Comment from LunarG: You can programmatically enable debug printf.
Take a look at this whitepaper to learn how to do it.

6. Timely release of Validation Layer support for newly released Vulkan API
a. But it would be rather nice if a extension was released in tandem with validation

layers support.
b. Providing pre-built binaries from GitHub and having layer support for new

extensions outside of SDK releases
c. I've had a lot of cases where validation layers didn't support a certain extension.

And trying to figure out what is causing a segfault without validation layers
support is. Less than pleasant.

LunarG 2024 Ecosystem Survey Results 60

https://www.lunarg.com/wp-content/uploads/2024/01/Configuring-Vulkan-Layers-LunarG-Christophe-Riccio-01-16-2024.pdf

i. Comment from LunarG:. The current workflow utilized by the Vulkan
Working Group results in the validation layer development not starting
until the extension is released (in many situations). This causes the lag
between extension release and validation layer support for the extension.
The working group is beginning some changes to the workflow to enable
validation layer development in parallel with CTS development. It will take
some time to get there, but over time things will improve.

ii. End of Year Update: The working group process has been modified to
require validation layer support coincident (or within a couple weeks of
release) for any new extensions.

7. Other
a. No suggestions.
b. do not for the moment
c. I don’t see any. It’s THE main reason that drives me to use Vulkan. They are so

nice and I really feel like once all validation errors are gone, only logic bugs
remain. Which is a great thing.

d. I'm learning how to use it just now, so it's a bit early to say, for me.
e. Create a more streamlined process of initializing the validation layers and

customizing them.
f. Validation layers are good and people should be using them more often, the

problem is that if you post about your problem online, it is usually due to another
library integration error from their side or the problem occurs from an obscure
issue that not all users would encounter so waiting for an answer could take
ages if it’s correct in the first place

g. Shader location information is very unreliable for me in most cases, so much that
I don't trust it anymore but rather use the validation output to pinpoint the
offending location manually.

i. Comment from LunarG: The shader interface code (and error messages)
have been refactored in the last year. It can be hard to understand if one is
not familiar with the terms used in the spec. We are open to any
issues/suggestions on how to improve the wording. Feel free to submit
any suggestions on the github:
https://github.com/KhronosGroup/Vulkan-ValidationLayers

h. Checking for more issues is always good. I've made a couple GitHub issues with
specific suggestions already

i. Provide more sample code
j. By separating the validation logic from the business logic of our application
k. Also printing in hanging shaders (to uncached memory) would be great.
l. Enable every existing validation by default, use opt-out flags instead of opt-in

i. Comment from LunarG: We intentionally do not enable all the options by
default. For example, debugPrintf is not compatible with GPU-AV. As well,
by enabling them all, you will get absolutely terrible performance. It is

LunarG 2024 Ecosystem Survey Results 61

better to run core validation first, clean up the issues, and then start
enabling other options.

m. The issues are known just a matter of fixing them.
n. No regressions when new versions are released.
o. Overriding VK_USE_64_BIT_PTR_DEFINE, i.e., the underlying

VK_DEFINE_NON_DISPATCHABLE_HANDLE isn't really supported on all
platforms. For example, setting VK_USE_64_BIT_PTR_DEFINE to 1 with MSVC
just crashes (probably because of size mismatch). I don't think this is fixable
from the layers code. BUT perhaps the SDK could provide a header with
compile-time checks (static_assert) that could ensure no such things happens.

i. Comment from LunarG: This is a known issue. Issue
https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/5961

ii. End of Year Update: This issue has been closed in that it is out of scope
for the Vulkan Validation Layer

p. Some compile time validation would be amazing but I don’t see how that would
be possible.

q. Make it simple on Android. Windows you just install it, on Android is bunch of
setup

r. A mechanism for passing in Tracy style SourceLocationData so that tools can
get information about the calling code. In December 2023 I added extensible
instrumentation support to the VulkanSceneGraph project, and as part of this to
support Tracy frame profile I created a vsg::SourceLocation struct that is
compatible with the Tracy SourceLocationData, perhaps this could be leveraged
for Vulkan layers.

LunarG 2024 Ecosystem Survey Results 62

https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/5961

Open-ended Feedback : Vulkan SDK
1. Packaging and installation

a. Use an MSI installer and simplify side-by-side installations of multiple SDKs
i. LunarG comment: The windows SDK can only put one path to the layers in

the windows registry. However you can point vkconfig to an alternate
folder for your layer files. Making it obvious how to do this with vkconfig
could be improved.

b. Option to replace the existing SDK, I usually don't need more than one and
uninstalling the old one is an extra step.

i. LunarG comment: The Qt Installer technology is used for the SDK
packaging and it will not allow installation in a folder that already has
contents. However an existing SDK could be detected, deleted, and then
restart the installation. This has been logged as an enhancement request
and may be considered in the future.

c. Switch back to tar.gz files on mac so they can just be expanded into a folder.
i. LunarG comment:

1. The macOS SDK is not a zip file intentionally. We need to track
download rates for optional packages to determine actual usage
to influence future decisions.

2. There are improvements we could make to the installer (not be a
dmg file) that would make command line interface usage of the
installer (as documented in the Getting Started Guide) to be used
in an automation environment. This has been added to our
enhancement tracker for future consideration.

3. End of Year Update:
a. The dmg distribution has been removed. You can now

unzip the download and run the installer from the
command line. This helps with automated workflows that
grab and install the latest SDK.

b. The "entire" SDK is now dual platform (Apple Silicon/x86_64)
and this finally includes the installer.

c. iOS support was also added to the macOS SDK.
d. macOS integration
e. Configuration under macOS should be simplified.

i. LunarG Comment: Without an email address to ask more, we are unsure
why it is believed to be complicated or what is meant by "macOS
integration". Perhaps this comment is more related to requirements of
developing in an Apple environment and not the SDK itself?

f. I would appreciate an rpm package for fedora systems
i. LunarG comment: Many Linux distributions are getting packages created

by the distribution packagers. It is out of scope (resources don't exist) for

LunarG 2024 Ecosystem Survey Results 63

LunarG to create Linux packages for many Linux distributions. It was
decided to create the packages for only Ubuntu because

1. 2 LTS releases of Ubuntu are tested/supported by the Linux SDK
2. There is a lag of when Linux distros will have packages with latest

validation layers and tools, so we delivered the latest in the Ubuntu
packages but can't afford to do it across many Linux distributions.

g. I wish the SDK was a single library under a single namespace that handled
everything.

h. I've found several tools offering "install.zip" files which makes me believe there is
actually a formal way to install those into the sdk? Namely shaderc and spirv
tools. Couldn't figure it out and just added them to my PATH variable.

i. LunarG comment: shaderc and spirv-tools are already part of the SDK.
i. Please provide up to date vcpkg packages

i. LunarG comment: It appears that packages are already being updated by
the community (https://vcpkg.io/en/packages, search for Vulkan) in a
timely manner.

j. Can we have a simple standalone version of vkconfig please ?
i. LunarG comment: The concept of a standalone vkconfig doesn't really

make sense. vkconfig in the SDK is a way to access all the layers and
tools in the SDK. So you need the SDK.

2. New features for the SDK
a. Bring Vulkan layer factory back.

i. LunarG comment: The SDK target user is a person developing Vulkan
applications. Layer development was not considered part of that
audience. In addition, due to resource bandwidth, the layer factory was
not getting any cycles for maintenance or improvement. Hence it was
removed from the SDK and also deprecated from the VulkanTools
repository and placed into a read-only repository. There currently is not a
plan to bring it back to the SDK.

b. Ship a static loader on macos and remove bloat like glslang etc
i. LunarG comment: A static version of the loader is already included in the

macOS SDK.
c. Validation layers are used by developers. Would it be possible to include debug

information besides the releases so we can see more information when
debugging/breaking

i. LunarG Comment: We have discussed this many times internally and each
time we discuss it we decided again to not include the validation layer
source in the SDK for the following reasons:

1. Including the Validation Layer source could mislead some
developers to believe they can build the validation layers from that
included source. To enable a build of the validation layers from
that source also adds additional complexities:

LunarG 2024 Ecosystem Survey Results 64

https://vcpkg.io/en/packages
https://github.com/LunarG/Vulkan-Layer-Factory

a. Include additional repositories to satisfy build
dependencies (spirv-tools, robin-hood hashing, glslang)

b. Would want to prune out git-specific artifacts from the
repository (e.g. .git/, .github/, git settings like local user
and remote URL), but doing so makes the repository look
unfamiliar to developers (so use the github to access the
source)

2. It is easy to go get the validation layer source from github
a. All SDK releases are fully branched and tagged with

“Vulkan-SDK-X.Y.ZZZ.w” and so it is easy to clone the
correct version

b. Accessing the source from the github also enables users
to build the validation layers if desired in a supported
manner

c. The associated PDB libraries included with the SDK are
only for the validation layers and not for spirv-tools or
glslang. A user would not be able to step into the spir-v
validation code or the glslang code used by the validation
layers.

d. Can we include some debugging kit included in SDK to find weather any issue
pointing to vulkan or other components.

i. LunarG comment: It isn't clear what is being requested. If the request is to
debug the Vulkan installation on a system, the SDK already has tools to
do this. vkconfig provides debug output from the Loader as well as a tab
for running vkvia. These tools can help determine missing Vulkan
components from your system.

e. For myself, I really like the way it is provided right now. However, since the vast
majority of developed Vulkan projects will require a windowing system such as
SDL or GLFW, for a generic user of the SDK maybe you could offer versions of it
bundled together with one of the most popular graphic libraries/APIs such as the
ones mentioned above.

i. LunarG Comment: SDL is already included with the SDK. GLFW is
coming…

f. Offline documentation
i. Comment from LunarG: This is in our TODO list, just hasn't bubbled up in

priority yet…
g. I would love a pure C (non cpp, oop, ans whatnot) abstraction over vulkan. Vk-ez

was a great start but sadly got abandoned.
h. implement something like VulkanScengraph to make it easy to use by other

developers, it takes a humongous amount of time to learn
i. LunarG comment: To enable the existing resources to deliver a usable

SDK, the target audience of the SDK was defined to be tools used by

LunarG 2024 Ecosystem Survey Results 65

those developing Vulkan applications. It was a conscious decision to not
include samples, tutorials, and abstraction layers to help improve the
learning experience for Vulkan. There are many resources in the
ecosystem that already provide this such as vulkan.tutorial.com and the
KhronosGroup samples.

i. I am missing Linux ARM, maybe also Windows ARM.
i. End of Year Update:

1. A Windows 11 on ARM SDK was released with the 1.3.290.0 SDK
(July, 2024)

2. For Linux users wanting an ARM solution, they can use the Linux
tarball SDK and rebuild it for ARM using the vulkansdk script

3. shader/compiler
a. Make a windows application to compile GLSL to SPIR-V. Command line

operation is pretty basic.
i. LunarG comment: This is best suited for IDE developers and not the

Vulkan SDK.
4. Build environments

a. Vulkan Integration and Build Environment (with and Without SDK)
b. Get versions with fixed CMake pushed downstream as quickly as possible
c. Make sure it’s CI friendly
d. better integration with cmake (to generate cmake config files during SDK

installation)
e. Include cmake configs for all the libraries provided by the VulkanSDK to help 3rd

party tools find the include, libs, versions etc.
i. LunarG comment: The above 5 comments represent a non-trivial project

but would provide value to SDK users. LunarG would have to make sure all
the upstream repositories have cmake config files and also test builds
with all of the cmake config files to make sure we aren't shipping
something that is broken. As such it isn't clear if we will have the
resources to get to it soon. It has been logged as an enhancement to the
SDK that would provide good improvements for folks building their
projects using SDK components.

5. Other
a. If possible, change the way you can check for a present compatible device queue

to not need a surface.
b. VK_EXT_debug_utils enhancements

i. LunarG comment: Without more specifics, it is hard to know what
enhancements are needed. However we speculate that the fact that some
of the layers (like the Profiles layer) don't implement this extension may
be an improvement that is needed.

c. A better way to handle initialization of the instance and device. There are lots of
great helper libraries to take inspiration from."

LunarG 2024 Ecosystem Survey Results 66

d. Deprecation tags for things that shouldn't be used in specific versions of Vulkan.
i.e. if you make a define that you're targeting 1.3, the out of date functions should
get tagged as deprecated with comments that point to the newer functions to
use.

i. End of Year Update: The Vulkan Working Group recognizes the need for
this and is working on a future solution.

e. Documentation is sometimes out of date.
f. Nothing really, works well.
g. It is definitely much better than what we have with OpenGL, still feels a bit short

in overall tooling experience when comparing against the experience provided by
Metal, DirectX, NVN and LibGNM(X) SDKs.

h. Its great.
i. none
j. I don't think I have any. Keep up the good work!
k. No suggestions.
l. Keep up the great work!
m. do not for the moment
n. Nothing at the moment
o. none
p. Nothing
q. I am pleasantly surprised how Vulkan SDK experience has improved versus what

we ever got for OpenGL, although there is still some room to improve versus the
proprietary APIs developer experience.

r. There is still a bit of ""build your own boat before going to fishing"" kind of
experience."

LunarG 2024 Ecosystem Survey Results 67

Open-ended Feedback : Profiles Toolset
When using the Vulkan Profiles toolset, what are the inhibitors for you to use them easily or
effectively?

Answered: 5
Skipped: 253

1. I'm just getting started with it after hearing so much about Profiles at Vulkanized, so I
haven't run into any major pain points yet

2. They work well for our case.
3. Still not as easy to use as in other APIs, where there is no need to parse profile

configuration data.
4. using predefined profiles is fine, would like to have an easy way to use profile plus some

extensions I can specify
a. LunarG comment:
b. To use a "profile + extensions" with the Vulkan Profiles API library

i. This is possible already at least at VkDevice and VkInstance creation. You
can see the "Basic usage of the Vulkan Profiles library" in the Vulkan
Profiles tools white paper for this.
https://www.lunarg.com/wp-content/uploads/2024/02/The-Vulkan-Profil
es-Tools-LunarG-Christophe-Riccio-02-01-2024.pdf

ii. However, it's true this is not possible for checking whether a profile +
extension is supported. I guess for that case, a dedicated user defined
profile can be created including these extensions then we can check
whether each profile is supported and create VkDevice and VkInstance
using both profiles or better require the predefined profile in your user
defined profile that include the extra extensions and only check the
support of your user defined profile.

c. To use a "profile + extensions with the Vulkan Profiles layer,
i. We can still create a dedicated user defined profile including additional

extensions and requiring the predefined profile. Then we can load the user
defined profile in the Vulkan Profiles layer.

ii. "VP_EXAMPLE_myprofile": {

iii. "version": 1,

iv. "api-version": "1.1.142",

v. "label": "My profile",

vi. "description": "Description of my profile",

vii. "profiles": [

viii. "VP_ANDROID_baseline_2021" // A predefined
profile

ix.],

LunarG 2024 Ecosystem Survey Results 68

https://www.lunarg.com/wp-content/uploads/2024/02/The-Vulkan-Profiles-Tools-LunarG-Christophe-Riccio-02-01-2024.pdf
https://www.lunarg.com/wp-content/uploads/2024/02/The-Vulkan-Profiles-Tools-LunarG-Christophe-Riccio-02-01-2024.pdf

x. "capabilities": [

xi. "my_additional_extensions_block"

xii.]

xiii. },
5. interface difficult

a. LunarG comment: That's probably the Profiles layer settings and that a lot of the
features are using command line scripts. There are possible improvements here that
can be made.

LunarG 2024 Ecosystem Survey Results 69

Open-ended Feedback : RenderDoc
End of Year Update: A version of RenderDoc has recently been released that allows for
debugging the rest of the normal work while an application has raytracing enabled. For
more information, see Baldur's "Behind the scenes" post.

1. Renderdoc's missing support for the lastest extensions and features is becoming a
bigger problem, e.g. descriptor buffers, mesh shaders, ray tracing. gfxreconstruct can be
used instead in some situations, but it's not a full debugger (at least not yet?). Having
debugging tools is very important and I hope in the future we will get one that supports
all features in a reasonable timeframe.

2. Sponsoring / adding ray tracing support to RenderDoc would be a great help
3. Missing ray tracing debugger tools (there is no remderdoc support. Nsight is available

though).
4. I know its not part of the vulkan sdk but there are not much debugging tools for the ray

tracing extensions yet (e.g. in renderdoc)
5. Lack of ray tracing support in RenderDoc affects my effectiveness and productivity when

developing to Vulkan
6. bugs in RenderDoc affects my effectiveness and productivity when developing to Vulkan

LunarG 2024 Ecosystem Survey Results 70

https://renderdoc.org/docs/behind_scenes/raytracing.html

Open-ended Feedback : High level Shader Language /
Compilers
End of Year Update:

Khronos has launched another choice for your shader language and compilation needs.
"Khronos Group Launches Slang Initiative, Hosting Open Source Compiler Contributed by
NVIDIA. Advanced language features enhance GPU shader development productivity and
portability. Open governance encourages broad industry collaboration."
https://www.khronos.org/news/press/khronos-group-launches-slang-initiative-hosting-o
pen-source-compiler-contributed-by-nvidia?es_id=866c0bb2b0

1. GLSL Language not moving forward; need more modern shader language (LunarG

comment: There isn't enough industry interest in advancing the language features of
GLSL for there to be sponsors to move GLSL forward. There are other promising
solutions such as slang (https://github.com/shader-slang/slang)

a. Next gen shading language would be on my wishlist
b. need better shading language options/productivity with out compromises
c. I'm worried about the shader ecosystem. GLSL seems to be in maintenance-only

mode, dxc has a very complicated codebase and the Vulkan/SPIR-V support still
seems to be pretty experimental in certain areas. It's hard to judge whether there
are other viable shader compilers/languages.

d. A new language designed for larger codebases would make things easier and it
could still be compiled to SPIRV. I briefly looked at Slang it might be what I'm
looking for.

e. glslc is shipped without a class necessary for include support. It would help to
have that on board.

f. GLSL language is constraining, e.g. passing a buffer as a function arg requires
macro workarounds, etc.

g. Mostly GLSL being awkward to use (no generics, weird BDA syntax), but I have
not tried slang yet.

h. GLSL is basically as up-to-date as I need it to be for spir-v features, but lacks
basic programming productivity features (operator overloading and generic
programming). we are forced to use it regardless because HLSL doesn't support
our use case. We've considered doing RustGPU, even though our code-base is
C++ because of how awful the other options are, but it's not clear what is
done/usable, and some of their code transformations result in poor performance,
you can use SPIR-V from it, and unlike GLSL, using it isn't in indefinite limbo.

i. GLSL is old and no longer feasible for effective shader development
j. All these shader languages are either bad or immature. Slang just got pointers,

but they crash the compiler. I still need to build and try Vcc.
k. Lack of good shading languages, every one has horrible compromises. HLSL has

better programming features, but sticks with out-dated HLSL SV model from the

LunarG 2024 Ecosystem Survey Results 71

https://www.khronos.org/news/press/khronos-group-launches-slang-initiative-hosting-open-source-compiler-contributed-by-nvidia?es_id=866c0bb2b0
https://www.khronos.org/news/press/khronos-group-launches-slang-initiative-hosting-open-source-compiler-contributed-by-nvidia?es_id=866c0bb2b0

90s, and doesn't support absolutely critical features like physical addressing
(buffer_reference(2)) properly. I also can never trust it to be up-to-date with
SPIR-V features.

l. We need to improve HLSL support for Vulkan
m. C++ style support in shader programming
n. The need for good shader languages. GLSL is old and does not get updated

(aside from when new extensions are needed for a new Vulkan
feature/extension). GLSL is a burden to work with, but I must wait with HLSL
since it still needs to properly support GLSL_EXT_buffer_reference. It was
apparently admitted that GLSL would not be developed anymore, which means
that the entire API rests upon Microsoft's HLSL development to also hack in the
new Vulkan features, which is a ""community contribution"".

o. It would be very nice to have an actual C++-like (minimum 17, ideally C++23/26))
language to work with it (The Vulkan Clang Compiler looks promising, but it will
take very long until it is properly usable and efficient, and if there is no official
support from Khronos/LunarG, I do not see it becoming a safe bet unfortunately).

2. VCC (LunarG comment: VCC is not yet endorsed by many key developers and wider
spread adoption in the industry would be needed before it is included in the Vulkan SDK).

a. Maybe my #1 blocker nowadays is just headaches with getting large, complex
shader code to perform well. glslc and glslangValidator are designed for
compiling relatively small shaders. This article does a great job of describing the
problem: https://therealmjp.github.io/posts/shader-permutations-part1/
https://therealmjp.github.io/posts/shader-permutations-part2/ I opted for
dynamic branching / a GPU bytecode interpreter to solve the shader permutation
problem, but it was very difficult to write the code in a way that glslc would
compile it and the code would still be performant when lowered to machine code
and executed on a (NVIDIA/AMD) GPU. I would be very interested in seeing more
modern language features such as real function calls and pointers in GPU shader
code, like what VCC allows for: https://xol.io/blah/introducing-vcc/"

b. Though it is at an early/experimental stage of development, I think the Vulkan
SDK should take a serious look at VCC as an future alternative to
glslangValidator and glslc for translating human-readable code into SPIR-V. One
of my biggest headaches as a developer has been fighting performance issues in
larger, more complex shaders due to how GPU code gets compiled. VCC might
help relieve me of these headaches. For example, with real function calls, I might
be able to avoid having large complex ray-tracing / dynamic branching code get
inlined/copy-pasted everywhere in the SPIR-V to the point that the shader's
performance tanks. https://xol.io/blah/introducing-vcc/ "

c. Vcc rulez
d. Put Vcc in the SDK

3. DXC
a. The myriad of DXC bugs

LunarG 2024 Ecosystem Survey Results 72

b. Bugs in DXC
c. HLSL to SPIR-V translation is quite problematic at the moment. Lot's of DXC bugs

that never get fixed.
4. Other

a. I don't know where to find information about how glslang gets compiled. Does it
get SPIR-V-Tools (i.e., supports HLSL) ? But maybe I'm just blind, so sorry if it's
documented somewhere."

i. LunarG comment: glslang supports HLSL (shader model 5 and below)
b. I don't think the glslang c interface gets exported in the SDK. I may be using a

version too old (I didn't check each version after 1.3.243). I mainly work in C++,
so this isn't a big deal for me, but this may affect C developers.

i. LunarG Comment: glslang has a C interface and it is documented in the
README

c. Shader authoring is a somewhat painful experience in glsl. Few (if any) IDE
extensions have real language support beyond syntax highlighting, nor do they
understand the various extensions Vulkan adds to the language.

d. consuming GLSL shaders from OpenGL
e. OptiX won out over Vulkan due to the shading language. Vulkan is not seen as a

serious alternative to OptiX (/CUDA) within my company, despite OpenGL being
viewed favorably.

LunarG 2024 Ecosystem Survey Results 73

Open-ended Feedback : Developer Tools
1. Vulkan headers

a. huge VulkanHPP header (long compilation time)
b. When developing in C++, I found the lack of modern constructs provided by

vulkan.hpp a bit painful. But the design of these C++ bindings is based on the
fact it should reflect the explicitness of the underlying C API, so I wouldn't
complain about this.

c. Nothing directly linked to the API specs or tooling in themselves. However, I
realised that my compilation times go wild very quickly when using vulkan.h or
vulkan.hpp (I don't have a big config'). I ended up writing my own vulkan.h, which
instead of including platform-specific headers (windows.h for example...), just
forward-declares the needed types.

2. Abstraction Layer, boilerplate utility
a. making API to abstract vulkan stuff
b. The cost of getting to a blank frame rendering. Once you have a frame running

with the underlying framebuffers everything becomes really easy. However,
getting to this point takes so long and if I want to decouple my projects I have to
write this boilerplate myself. There should be platform specific defaults/helpers
at some point to welcome more junior engineers into VK. The more adoption VK
gets for learning purposes, more consideration it will receive to be used in the
game industry. DX comes with all sorts of helpers for example. Including the
shader binding table.

c. Better higher level abstractions and easier integration with managed languages,
now that OpenGL is frozen in 4.6. It is no accident that people are looking into
WebGPU instead of Vulkan for native coding, when they aren't game engine
developers.

d. Vulkan still needs a huge amount of boilerplate code to set up.
e. The amount of boilerplate code required oftentimes

3. Lack of good shader debugging
4. Debugging compute GLSL shaders with ray queries is mostly guesswork at the moment.

In order to properly debug our shaders, we've ported them to the CPU (with some
preprocessor magic to have the same shader source for GLSL and C++ code). While this
works, it isn't productive.

5. runtime tool to show buffer and image content during app debugging
6. Poor Wayland support
7. maybe, to optionally install cpu vulkan device with the SDK (?)

a. LunarG comment: It is intentional that the SDK does not install Vulkan drivers.
This is the responsibility of the IHV.

8. enabling/disabling particular features and extensions in a layer (for app testing
purposes)

a. LunarG Comment:

LunarG 2024 Ecosystem Survey Results 74

i. The VK_EXT_layer_settings API allows you to enable/disable features in a
layer. See this whitepaper for more information:
https://www.lunarg.com/wp-content/uploads/2024/01/Configuring-Vulka
n-Layers-LunarG-Christophe-Riccio-01-16-2024.pdf

ii. Vulkan Profiles will allow you to change the reported Vulkan features and
extensions via the VK_KHRONOS_Profiles_layer. See this whitepaper for
more information:
https://www.lunarg.com/wp-content/uploads/2024/02/The-Vulkan-Profil
es-Tools-LunarG-Christophe-Riccio-02-01-2024.pdf

9. changing order of enumerated physical devices or hiding some of them in a layer (for
app testing purposes)

a. LunarG comment: Implicit layers delivered by IHVs can do this. As well, vkconfig
(Vulkan Configurator) allows you to select a specific physical device.

10. The synchronization could also use some work. It can get very tedious to try and
remember what to use. It would be extremely useful if we had a visualization of multiple
frames with a dependency graph.

11. ray tracing debugging would be on my wishlist
12. I want to inform that debugging on linux environment is bit complex, so if we include

customized tool for debugging on linux will be plus
13. I'm mildly interested in seeing further development of MoltenVK. If the Apple Vision Pro

takes off, it might be nice to target it with my Vulkan VR software, though I don't even
have a Mac OSX machine at the moment.

14. I have used a number of the LunarG tools in the past, but for our current project we are
using our own in house tools. I did not work on these, so can't comment on how they
were implemented.

15. I love Vulkan and I won't give up on it. I will maintain it by myself if I must. It deserves to
have so much more and in order to do that we must make it friendly for newcomers. No
one should be going through 800 lines to draw a single triangle on the screen. There are
definitely sensible defaults but for each platform. So we should ask the platforms to
supply them.

16. Well, share kernel_slicer again https://github.com/Ray-Tracing-Systems/kernel_slicer i
have a paper about it
https://www.semanticscholar.org/paper/kernel_slicer%3A-high-level-approach-on-top-of-
GPU-Frolov-Sanzharov/9b53f4dc9c6e7589bed5c1b6fc91ea79867e2f14?utm_source=dir
ect_link please e-mail me of you can't access paper text

17. please create a C API for vk-bootstrap, just like VMA has a C API. i need it for writing
vulkan with zig and it makes starting with vkguide difficult.

LunarG 2024 Ecosystem Survey Results 75

https://www.lunarg.com/wp-content/uploads/2024/01/Configuring-Vulkan-Layers-LunarG-Christophe-Riccio-01-16-2024.pdf
https://www.lunarg.com/wp-content/uploads/2024/01/Configuring-Vulkan-Layers-LunarG-Christophe-Riccio-01-16-2024.pdf
https://www.lunarg.com/wp-content/uploads/2024/02/The-Vulkan-Profiles-Tools-LunarG-Christophe-Riccio-02-01-2024.pdf
https://www.lunarg.com/wp-content/uploads/2024/02/The-Vulkan-Profiles-Tools-LunarG-Christophe-Riccio-02-01-2024.pdf

Open-ended Feedback : GPU crashes/hangs

End of Year Update:

With the release of the 1.3.290.0 SDK (July, 2024), LunarG shipped a new layer,
VK_LAYER_LUNARG_crash_diagnostic. The Crash Diagnostic Layer (CDL) is a Vulkan
layer to help track down and identify the cause of GPU hangs and crashes. It works by
instrumenting command buffers with completion checkpoints. When an error is detected
a dump file containing incomplete command buffers is written. Often the last complete
or incomplete commands are responsible for the crash.

Documentation can be found here:
https://vulkan.lunarg.com/doc/sdk/latest/windows/crash_diagnostic_layer.html. It is
supported on Windows, Linux, and Android.

1. Debugging GPU crashes/timeouts is always very tedious. The only reliable way that
works so far (also for older hardware) is to have a reliable repro, and bisect where the
issue happens by disabling various parts of the code.

2. Debugging DeviceLost errors.
3. Difficult-to-debug GPU crashes
4. DEVICE LOST error, Nvidia's aftermath does provide information, but many times the info

is of no use.
5. Unpredictable GPU crashes on AMD's integrated cards

LunarG 2024 Ecosystem Survey Results 76

https://vulkan.lunarg.com/doc/sdk/latest/windows/crash_diagnostic_layer.html

Open-ended Feedback : Android
1. Lack of good Android tools impacts my ability to be effective and productive while

developing to Vulkan
2. As a mobile developer the issue is that drivers are rarely updated. Whether a political or

technical solution is necessary it would be really nice to be able to use shader objects
and all the other improvements since 1.1 on mobile without losing 95% of the devices in
the wild.

3. Bugs in drivers
4. I'm shipping on a lot of phones that no longer get driver updates. Reporting bugs will

help future phones, and some current ones, but I still need to work around the bug in my
code to ship on the older phones that people are still using

5. There are too many vendors ...
6. I do report, but mostly to get advice on how to work around it - I do not expect mobile

vendors to fix the issue.
7. Android driver quality is a huge issue. When will Google do something about it? Advert

revenue is sweet but the luck of updates is slowly killing Android."
8. Make this better: https://github.com/googlesamples/android-vulkan-tutorials It is really

bad currenty.
9. I need a Dxc compiler library for Android. I couldn't configure project using CMake. HLSL

language this is the future of Vulkan.
10. My main issue is currently the monolithic vulkan SDK to learn basic android samples.
11. The lack of driver updates on Android (or even other OSes) which means we have to

target versions of Vulkan that aren't the latest.

LunarG 2024 Ecosystem Survey Results 77

Open-ended Feedback : MoltenVK
Provide any additional feedback you would like to provide regarding MoltenVK.

A comment from Bill Hollings: We at MoltenVK appreciate hearing valuable feedback like this, and
we always welcome direct and specific feedback on the MoltenVK Issues List at
https://github.com/KhronosGroup/MoltenVK/issues

1. It is essential for us to support Mac, so steady development is very welcome!
2. Double precision for modeling/simulation… though I know this is a Metal limitation.
3. Keep up the good work.
4. MoltenVK is brilliant - it would great if it could keep up with "native Vulkan" without too

much lag.
5. CMake build support for MoltenVK so that's easier to integrate in our own CMake based

product build.
6. Linking against the Vulkan libraries should be simplified, this is sometimes ridiculously

complicated. Installation should also be simplified.
7. MoltenVK originated as a developer library to reach out to more developers. This is still

the way how we at Blender uses it. It is a tool to validate that our shaders and test cases
work on other platforms without booting into another machine. We don't expect to use
MoltenVK in a release due to maintainability aspects. Context: In Blender
studios/professionals can extend Blender using Python, we try to solve any missing
feature/texture format usage there is to add a smooth transition from our OpenGL
Backend to Vulkan. Adding workarounds for missing features would include most of the
workarounds we have added for Metal to be included for Vulkan as well. This would
increase maintenance, which leads to less development of new features. This adds
pressure to the small group experienced in these topics.

8. the SPIRVCross code-base is pretty scary given how load-bearing it is. it's full of one-off
hacks tuned for applications and contributing to it is not that easy (I've gotten some
patches in to begin refactoring SPIRType)

9. What can i say... I'm happy that it exists but unhappy about the poor quality of releases.
10. It's an astoundingly good piece of software that does a very difficult job extremely well.

The ability to ship on Android & iOS with a unified graphics code base is a massive
benefit. Thank you!

11. do not for the moment
12. Tile shaders for Vulkan. Ie. compute shader access to tile memory.
13. just not good enough to actually continue MacOS vulkan development at this time (too

many restrictions compared to Windows). I see that also limited mac GPU capabilities
are a problem. Could emulation layers be solution? (would work for development, not
production, but ok for now)

14. DebugPrintfEXT() support in shaders on macOS (i.e. via MoltenVK).
a. LunarG comment: Yes, we know about this gap. See this issue:

https://github.com/KhronosGroup/MoltenVK/issues/1214

LunarG 2024 Ecosystem Survey Results 78

https://github.com/KhronosGroup/MoltenVK/issues
https://github.com/KhronosGroup/MoltenVK/issues/1214

Open-ended Feedback : Vulkan Ecosystem
Documentation
If you use the docs.vulkan.org site, what suggestions do you have to improve the site?

1. Provide download of man pages for quick terminal use.
2. add images, visualizing concepts
3. Needs more spacing or whitespace
4. Google search brings up links to old docs.
5. Better search functionality

a. Vulkan Working Group comment (Developer Relations): We are currently working
on improvements to search which will address many of the open issues on the
doc site.

6. dark mode
7. Dark mode please.
8. dark theme please, my eyes hurt

a. End of Year Update:
i. Vulkan Working Group comment (Developer Relations): This feature has

been released
(https://github.com/KhronosGroup/antora-ui-khronos/pull/11) Feedback
welcome on further improvements.

9. I think the biggest challenge right now is SEO. When I search for Vulkan things on
DuckDuckGo, the spec pages come up and not anything from docs.vulkan.org

10. When I look up a Vulkan function or struct, it's usually because I want to see API docs for
it. Things like an explanation of its parameters, or seeing other items in an enum, or
seeing related functions. The Vulkan spec works really well for that, but I haven't had as
much success using docs.vulkan.org. Searching on the site brings up samples, links to a
Vulkan tutorial, the Vulkan Guide, as well as the spec. However, it links to places in the
spec that mention the thing I'm looking up, not the spec section matching the exact thing
I want. My workflow would be easier if the link to the item in the spec was always at the
top, at least if there's a spec entry for what I'm searching for Or honestly, you could just
put sections of the Vulkan spec as function and struct docs in vulkan.h. That's be super
simple to use and very discoverable

a. End of Year Update:
i. Vulkan Working Group comment (Developer Relations): This was fixed

with: https://github.com/KhronosGroup/antora-ui-khronos/pull/7.
Searches now default to the document you have open unless you
explicitly select to search all docs on the site

11. Fix the duplicate search results
12. idk, I don't use this that much
13. Works well for me, no particular suggestions.
14. better use more images

LunarG 2024 Ecosystem Survey Results 79

https://github.com/KhronosGroup/antora-ui-khronos/pull/11
https://github.com/KhronosGroup/antora-ui-khronos/pull/7

15. More information about performance and use cases for features and regular
commands.

16. Since we target Vulkan 1.0 + extensions / Vulkan 1.1 it would be nice to have these
versions of the spec somewhere on docs.vulkan.org instead of having to dig in the
Vulkan registry :)

17. By default, it should make it easy to find major categories. Instead, it looks like it's a GUI
to look at the Vulkan spec (no help at all). However, if you go looking, you'll find links to
helpful material. This helpful material should be front-and-center!

18. The site is somewhat slower than using the standalone PDF as it takes slightly more
time to load each section. On a long coding session it adds up to quite a bit of wasted
time.

19. not applicable
20. Vulkan Basics is written with mobile/OpenGL ES target audience in mind.
21. Improving extension samples. For example Synchronization2 doesn't explain anything.

Perhaps also a bit of backstory of the extension + link to its proposal.
22. There are some dead links like inside

https://docs.vulkan.org/samples/latest/samples/extensions/README.html (I should
report this one :-))

a. End of Year Update:
i. Vulkan Working Group comment (Developer Relations): We have

addressed many of these. If you continue to see more, please open an
issue on https://github.com/KhronosGroup/Vulkan-Site

23. VUIDs are endless lists, making difficult to read other important information. Could it be
collapsible, for instance? Yes, VUIDs are very useful and they have very important place
in docs, and very useful at some moments when you need them. But you are not always
interested in them while they take tooooo much space.

24. No suggestions.
25. Sometimes it's difficult to determine what a specific feature is for, links to the proposal

help here, but a brief sentence of explanation would be nice in the spec itself.
26. Faster loading is always appreciated. It's fine most of the time though.
27. Would be nice if it didn't promote writing ancient C++ or at least took basic core

guidelines into account.
28. More example code
29. More discussion of the motivations behind the decisions made in the Vulkan API, more

focus on the practices one should adopt to write "modern Vulkan" targeting 1.3 and
higher.

a. End of Year Update:
i. Vulkan Working Group comment (Developer Relations): The Vulkan team

recognizes this need and are actively working on improvements
30. Specific examples like Pipelines Shaders etc.
31. It needs more tutorials

LunarG 2024 Ecosystem Survey Results 80

https://github.com/KhronosGroup/Vulkan-Site

a. Vulkan Working Group comment (Developer Relations): We will continue to
include tutorials on all new samples and are continuing to add additional tutorials
to the Khronos Vulkan Tutorial on docs.vulkan.org

32. Practical end-to-end example of a barebones 3d engine.
33. A beginner tutorial for ""modern"" Vulkan 1.3+ (or whatever moltenvk supports).
34. Many links are still going back to the old spec

a. Vulkan Working Group comment (Developer Relations): We’re working on
addressing these when we find them

35. if i google ""vkCreateSampler"", top hit is this:
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/vkCreateSampler.ht
ml. but then, there is slightly more info here:
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html#vkCreateSa
mpler. and then slightly more info here:
https://docs.vulkan.org/spec/latest/chapters/samplers.html. could all of this info be in
one place instead? (ideally with subsections like docs.vulkan.org and not everything in
one big place because its slow to load/search)

36. add chapter number and increase menu unfold level.
37. I don't have, it look good
38. Try mimics dx12 doc
39. Links on site to possible snippets, maybe even github backed.
40. Links in the Lexicon/Glossary to other terms defined in the Glossary when they are used.
41. Some exemple snippets with only what's needed for it to works
42. So far, not much to improve there! Or, perhaps, one thing could be slightly improved...

When showing some code snippet to modify or add to existing (previously written) code,
the docs could be a bit more explicit on where the new code should be plugged in... as
the written code grows with every new section of the tutorial, it might get a bit tricky to
understand where the new code should go. However, the ambiguity happens only here
and there, most of the time, if one has properly understood the code written so far, it's
pretty obvious where the new code should be inserted; in a few cases, however, it is a bit
more difficult, especially when implementing completely new or optional functionalities
(such as validation layers).

43. No suggestions, seems to be well-put together as far as I can tell :)
44. Honestly, compared to msdn your documentation is amazing. I know many Vulkan

applications use hlsl and compile it down to spirv (mine included). Hlsl documentation is
very outside your wheel house, but is the weakest part of the dev cycle in my opinion,
maybe you can coordinate something there.

a. End of Year Update:
i. Multiple Vulkan specific HLSL documents were added to the Vulkan

Guide. A high level shading language comparison between GLSL and
HLSL was done to help developers adopt HLSL. HLSL was also added to
many of the samples.

LunarG 2024 Ecosystem Survey Results 81

1. How to use HLSL in Vulkan:
https://docs.vulkan.org/guide/latest/hlsl.html

2. High Level Shader Language comparison:
https://docs.vulkan.org/guide/latest/high_level_shader_language_
comparison.html

Other documentation/tutorial related open-ended feedback from the survey (consolidated here):

1. What prevents you from being effective and productive while doing your Vulkan
development?

a. The documentation fragmentation issue. Need to read n+1 extension specs to
get a coherent understanding of how to do X.

b. Hlsl documentation primarily
c. No coherent and central documentation for vulkan design principles/architecture.

Central concepts are hard to grasp as they're fragmented throughout the official
documentation.

d. An official (digital) and maintained book(See Professional CMake by the
developer of CMake) would be very handy. I'd love to pay for that."

e. Lack of tutorials / non-specification docs
f. Also companies who publishes things as PDFs, which are never updated and

contain out-of-date and just plain wrong information... cough... cough... LunarG
g. You do not have proper textbooks for setting up a game engine or any viable

project. You simply make a spinning pyramid and that's it. The majority of
beginners probably stop there.

h. Lack of Doxygen-like comments for headers which can IDE shows what this
symbol does and parameters without looking documentations.

2. Is there anything else you would like to share?
a. Its not so much lack of documentation rather than what documentation is

produce is so shit that it should not be subjected upon anybody looking for
answers, and whoever is writing it should be prevented from producing anything
that another human will gaze upon.

b. Vulkan needs more improvements on organizing documentation and
https://docs.vulkan.org is a great step on that.

c. Now we desperately need educational resources to make everyone turned off by
Vulkan 1.0 renderpasses and whatnot to realize things have changed.

i. End of Year Update:
1. Vulkan Working Group comment (Developer Relations): We’re

working on additional learning resources to guide developers on
using the most recent improvements in the API which can simplify
application development

d. More tutorials for beginners through to advanced

LunarG 2024 Ecosystem Survey Results 82

https://docs.vulkan.org/guide/latest/hlsl.html
https://docs.vulkan.org/guide/latest/hlsl.html
https://docs.vulkan.org/guide/latest/high_level_shader_language_comparison.html
https://docs.vulkan.org/guide/latest/high_level_shader_language_comparison.html

e. Please provide learning textbooks to follow. Ideally, a series of official videos on
Youtube would be extremely helpful. If not, it's just going to be the 7 people who
know the secret of Vulkan and no one else.

LunarG 2024 Ecosystem Survey Results 83

Open-ended Feedback : Vulkan Samples
What Vulkan Samples would be most useful for Khronos to add in the future?

1. best practices for pixel art rendering, including batching, texture atlases, maybe sparse
textures

2. Post-processing / multisampling with dynamic rendering
3. samples using new extensions would be interesting
4. Samples that cover new extensions would be very useful.

a. Comment from the Vulkan WG (developer relations): New extensions get
samples on a regular basis for selected extensions.

i. End of Year Update:
1. VK_EXT_extended_dynamic_state3
2. VK_KHR_dynamic_rendering_local_read
3. VK_KHR_shader_non_semantic_info
4. VK_EXT_image_compression_control
5. VK_KHR_ray_tracing_position_fetch
6. VK_EXT_host_image_copy

5. I don't engage with the samples enough to know which ones are and aren't available, so
I'm not qualified to answer this question. In general, I think that samples that show how
multiple Vulkan features together, especially multiple newer features that may only be in
extensions, are the most useful

6. More bindless
7. A Vulkan layer demonstrating best practises for layer development
8. Vulkan SC compatible versions of some of the basic samples might be good.
9. more samples on the gpu address extension and more explanation for the current

samples as some samples doesn't have much explanation just code while it's useful it
could be much better with some explanation.

a. Comment from the Vulkan WG (developer relations): We now include tutorials
with every new sample and plan to backfill previous samples over time.

10. Rust sample ?
11. 2. VK_EXT_host_image_copy

a. End of Year Update:
i. Vulkan Working Group comment (Developer Relations): A sample for this

extension was recently added:
https://github.com/KhronosGroup/Vulkan-Samples/pull/1114

12. 3. more samples for VK_KHR_ray_tracing_pipeline
a. End of Year Update

i. Vulkan Working Group comment (Developer Relations): We now have
several RT samples available. We’ll continue to include more as the API
evolves

13. 4. VK_EXT_opacity_micromap
14. 5. more samples for compute shaders

LunarG 2024 Ecosystem Survey Results 84

https://github.com/KhronosGroup/Vulkan-Samples/pull/1114

15. More examples would be great: - how to use volk - how to use vkbootstrap - samples
showing basic things like getting a window up, using extensions, how to fix validation
errors

16. and memory like
VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_KHR, so as close as
we can to Direct Storage of DirectX

17. Better font rendering samples could be useful
18. 1. How to add text overlays using FreeType and TrueType fonts. 2. How to create 3D

letters from the above.
19. Frame pacing / present timing. bindless textures and resources
20. Stutter free rendering using fixed framerate timing. (DisplayLink on macOS, google

display timing on Linux, ???? on Windows)
21. More pure C examples.
22. More complex raytracing samples. It is lost on the beginners how someone would get

into their bound (or unbound) memory using the instance, geometry and primitive ids to
extract data. So many complications here. Also a strong helper class for the shader
binding table management is a must!

23. "Best practices" examples for each minor Vulkan version.
24. Optimize shaders in GPU
25. Multi threading resource loading.
26. Interop with OptiX. Larger ray tracing (i.e. multiple objects, multiple materials, multiple

ray types) - The current examples take some short cuts that don't easily translate to
larger projects

a. End of Year Update: This is out of scope for the Khronos samples. OptiX is a
vendor-specific library and has its own set of samples.

27. Other languages besides C and C++.
28. complex builds with cmake: dev/prod, shaders, including OpenXR and other Khronos libs
29. gi
30. How to draw 2d shapes, polygons, beziers, ..
31. RTX, more and complex render and subpass samples efficient CPU handshake samples

and lastly sample for Next Windows RTXIO or differnt naming DirectStorage data
transfer examples

32. I am aware of the Kompute project. I think this is a very good initiative, and potentially
viable alternative to proprietary APIs like CUDA. As far as I know, I don't think "pure"
compute samples are put into the spotlight for Vulkan Samples. By "pure", I mean "not
strictly related to graphics". I believe we have N-body compute and post-processing
effects, but nothing that would get the interest of people doing parallel computing.

33. The vulkan kube was awesome sample for learning the basics
34. Multiple shadow maps
35. Skinned Mesh Animation, IK
36. no more triangle example, use real models via gltf and interface that allows using the

sdk easily, e.g. what if somebody wants to develop an IG

LunarG 2024 Ecosystem Survey Results 85

37. VK_KHR_cooperative_matrix
38. Some Vulkan Interop things. Or samples that inspire implementation ideas.

a. End of Year Update: Some interoperability samples that were released:
i. https://github.com/KhronosGroup/Vulkan-Samples/tree/main/samples/exte

nsions/open_cl_common
ii. https://github.com/KhronosGroup/Vulkan-Samples/tree/main/samples/exte

nsions/open_cl_interop
iii. https://github.com/KhronosGroup/Vulkan-Samples/tree/main/samples/exte

nsions/open_cl_interop_arm
iv. https://github.com/KhronosGroup/Vulkan-Samples/tree/main/samples/exte

nsions/open_gl_interop
39. Some API examples to get the best available performance possible with Vulkan when

they are available to use and some binding between shaders (glsl & hlsl) and Vulkan
a. Comment from the Vulkan WG (developer relations): We are working on adding

HLSL support to the samples with the goal of having both GLSL and HLSL shaders
for most samples. We should have the first HLSL shaders in place soon.

40. I have not checked the Samples yet.
41. Video Encoding and Decoding;
42. more video encode,
43. 1. video decode/encode (VK_KHR_video_queue, etc.)
44. Not sure I've seen many samples for Vulkan Video Encode/Decode yet?

a. End of Year Update: Vulkan video samples are close to completion:
https://github.com/KhronosGroup/Vulkan-Samples/pull/1245

45. Comment from the Vulkan WG (developer relations):
a. Requests that already have implemented samples or are WIP:

i. ray tracing pipeline
ii. Ray tracing
iii. ray tracing
iv. Ray tracing, both simple and advanced
v. OpenGL Interop

vi. Vulkan Raytracing samples and saschawillems,etc..
vii. Buffer/Texture/Semaphore sharing with all other graphics APIs
viii. Proper way to handle sync with swapchain objects, especially in complex

cases, like this:
https://github.com/KhronosGroup/Vulkan-Docs/issues/2007

ix. Please create simple self-isolated sample just for android. In other words
do this, but for ANDROID: https://vulkan-tutorial.com/

1. Google comment: A simple hello-vulkan sample is available here
https://github.com/android/ndk-samples/tree/main/hello-vulkan and
can be downloaded directly from Android Studio by clicking on the
'Import an Android Code Sample' button

Additional feedback about samples from open-ended feedback (consolidated here):

LunarG 2024 Ecosystem Survey Results 86

https://github.com/KhronosGroup/Vulkan-Samples/tree/main/samples/extensions/open_cl_common
https://github.com/KhronosGroup/Vulkan-Samples/tree/main/samples/extensions/open_cl_common
https://github.com/KhronosGroup/Vulkan-Samples/tree/main/samples/extensions/open_cl_interop
https://github.com/KhronosGroup/Vulkan-Samples/tree/main/samples/extensions/open_cl_interop
https://github.com/KhronosGroup/Vulkan-Samples/tree/main/samples/extensions/open_cl_interop_arm
https://github.com/KhronosGroup/Vulkan-Samples/tree/main/samples/extensions/open_cl_interop_arm
https://github.com/KhronosGroup/Vulkan-Samples/tree/main/samples/extensions/open_gl_interop
https://github.com/KhronosGroup/Vulkan-Samples/tree/main/samples/extensions/open_gl_interop
https://github.com/KhronosGroup/Vulkan-Samples/pull/1245
https://vulkan-tutorial.com/
https://github.com/android/ndk-samples/tree/main/hello-vulkan

1. If you use the Vulkan SDK, what suggestions do you have for the Vulkan SDK?
a. A lot more working samples, for every extension
b. A bit more examples to show how to start interacting with Vulkan and some

basic rendering shaders
2. What prevents you from being effective and productive while doing your Vulkan

development?
a. Samples
b. Lack of examples on tutorials on more advanced subjects. Even beginner

tutorials don’t cover the very basic parts
c. There are fewer samples for newly released extensions.
d. Vulkan-Samples are useful (thanks, Sascha) for individual features, but they are

difficult to build a comprehensive understanding about a feature.
e. Lack of good tutorials on new extensions.
f. "Lack of standalone simple vulkan samples. Google provide very bad ones, poorly

writen. Don't do this: https://github.com/googlesamples/android-vulkan-tutorials
But do this for android: https://vulkan-tutorial.com/

i. Comment from the Vulkan WG (developer relations): The Vulkan samples
work across many platforms including Android. This includes a basic
“hello triangle” sample that works well on Android.

3. Is there anything else you would like to share?
a. It really is the lack or working examples for all extensions. Often you will find an

example but only after long searches with an engine. It should be minatory to
have working sample, in Github. We often feel extensions are going in, to the sole
benefit of one developer

LunarG 2024 Ecosystem Survey Results 87

https://vulkan-tutorial.com/

Open-ended Feedback : Vulkan API
LunarG comment: This feedback has been shared with the Vulkan working group. LunarG is
unable to make any editorial comments.

1. API Complexity
a. I love the explicitness but sometimes it’s too much.
b. Too many ways to do simple things.
c. having trouble visualizing things, and being told to use OpenGL to learn graphics

programming which feels way too magical
d. Having to constantly check the spec, but that is just the nature of a very explicit

API like Vulkan.
e. The needless, stupid complexity of the API in its entirety. Scrap it all and start

over.
f. The complexity of the spec and all the cases to handle depending on hardware.
g. Right now Vulkan gives us an infinite number of ways to do everything, but no

way to query the GPU for which of those ways is optimal on a given piece of
hardware. I desperately wish for some extension that’s about a half step higher
level from vulkan, which would let me have the control vulkan offers where I care,
and let me delegate the things I’m indifferent about to the GPU (such as texture
loading and unsupported format conversion).

h. Better understanding of synchronization (fences, semaphores, setting up
sensible stages at which to synchronize)

i. Renderpasses
i. End of Year Update: VK_KHR_dynamic_rendering_local_read was released

in the last year
j. Missing Features
k. So so so many API with each so so so many different parameters, when starting

to learn Vulkan & 3D graphics you are never sure if you use the API decently and
if you use correct parameters even when Vulkan validation says nothing
problematic.

l. Akward parts of spec. From recent memory: only Vulkan missing zero-length
SSBO, for no good reason.

m. Too much to learn
n. verbosity
o. Lack of deep GPU understanding
p. Vulkan is too difficult 🥺
q. if any issue occurs finding component
r. Having to look up stuff in the specs or online constantly…
s. Constantly having to look up the arguments to certain constructors of classes in

the vulkan-hpp library.
t. way to difficult to use, learning curve is huge. I know is hard to develop SDK but

not everybody has the time to be a master on computer graphics

LunarG 2024 Ecosystem Survey Results 88

2. API enhancements
a. need VK_EXT_shader_object for RT pipelines. MaterialX/MDL/generated shader

trend causes many shaders -> long pipeline compilation times
b. need cross-vendor VK_NV_ray_tracing_invocation_reorder extension. The

extension does _a lot_ more than just reordering; perhaps it should be split into
two. F.i. it allows to execute multiple hit shaders on only one traceRay call. This
can be used to reduce divergence and payload sizes."

c. Ray tracing is the best thing that happened to modern graphics, I would like
further development in this direction.

d. Although it affects me less, something similar like ray tracing shader tables or
even better: callable shaders form 64 bit integers, similar to buffer reference,
could eliminate the need for sorting for render calls completely (if shader tables,
then it should be able to play nicely with draw indirect, so the calls could still be
culled on the GPU). "

e. Compatibility with D3D12 ResourceDescriptorHeap (Not having truly bindless
support).

f. Also the lack of a buffer reference equal for images and samplers. NVidia already
has it, and uses it for DLSS (VK_NVX_image_view_handle). If there was
something similar for images (which should be possible considering NVidia
already has such an extension + OpenGL's bindless textures) it would make
rendering a lot more efficient in combination with buffer reference.

g. ResourceDescriptorHeap like system please!
3. other

a. I think there is too much fragmentation due to a proliferation of extensions.
Vulkan should be faster about making things required core features and
removing old functionality in new versions to avoid API cruft. Lots of new
extensions (dynamic rendering for example) are big improvements but it's hard
be able to write code that depend on them existing which partially defeats their
purpose in many situations. Layer based solutions like for sychronization2 help
since they move the burden from the developer into the SDK

b. I appreciate the power of the Vulkan API.
c. This VUIDs are technically very useful, but sometimes, they make doc in pdf

reading very unfriendly. I found myself using very old Vulkan doc pdf instead
because I can find more easily what I want.

d. OpenCL and Vulkan using Spir-V but not accepting each other's code doesn't
make sense to me

e. Vulkan is way, way worse than DirectX.
f. The last major thing we need for parity is device side enqueue, however we see

AMD has already submitted a proposal for this
https://github.com/KhronosGroup/Vulkan-Docs/blob/main/proposals/VK_AMDX
_shader_enqueue.adoc with VK_AMDX_Shader_enqueue. We are very excited to

LunarG 2024 Ecosystem Survey Results 89

see a cross platform solution to the problem come to fruition, Vulkan doesn't
even have parity with Metal in this regard.

g. need physical pointers to shared memory, or at least a method of loading
type-punned data into and out of shared memory in fixed size blocks, which is
one of two things left causing issues with parity between other code bases. We
lose to cuda and metal in some analogous applications *purely* because of this
issue, we'll have a large thing that needs to be read in, and used for all threads in
a local workgroup, which we would normally use all threads to cooperate to load
in, but can't because we aren't able to instruct threads to type-pun shared
memory/workgroup memory in SPIR-V as some other type (treating a incoming
struct as an array of u32s).

LunarG 2024 Ecosystem Survey Results 90

Open-ended Feedback : Other
1. A terrible and toxic community ranging from insanely pedantic spec Nazis to excessively

opinionated ideologue trolls who contribute nothing but their terrible and uninformed
opinions.

2. segmentation violation from inside vulkan functions
3. Discord
4. The issue I have is more compatibility with directx than vulkan itself, there's a couple

features I want to use (like scalar layout and BDA) but because how difficult it'd be to
emulate for my directx backend I don't use them.

5. Issues with specifying which installed version will be used. (There are multiple versions
of vulkan installed on my machine, one of which had a bug which caused the program to
segfault. I ended up stuck on this for a few months, unfortunately.)

6. I would like to have an AI model that would create deqp tests, to test my new driver
functionality in complicated cases.

7. Vendor support; Not all vendors support the latest extensions/features, minimizing the
extensions/features you use increases the user base you can support.

a. Can actually be addressed as a feature that I'd like to see in
https://vulkan.gpuinfo.org. That is, being able to filter by GPU age & Vendor &
Profile & OS. LunarG comment: Sascha is investigating what may be possible
here.

b. Suppose you're a developer that wants to support OS X & Y, Vendor X & Y, with
medium-end desktop graphics cards made in the last 5 years with the
VP_LunarG_desktop_baseline_2023 profile, what subset of
extensions/features/limits/formats can I work with?

c. End of Year Update: Additional filtering is being added to the GPU info database
which will also include a date range. All of the other filter possibilities mentioned
here are already implemented. Release window is early 2025.

8. not having a second development workstation
9. Nothing after i have created kernel_slicer to speed-up Vulkan dev.

https://github.com/Ray-Tracing-Systems/kernel_slicer
10. Nothing
11. My dogs
12. Nothing really
13. do noy know for the moment
14. Nothing much tbh.
15. As a solo dev iteration time can be slow.
16. Not really, the survey failed to work at some parts, Firefox 122.0 (64-bit)
17. Limited experience

a. My inexperience as a beginner.
b. Being a beginner in knowledge about C++.
c. I still have OpenGL-brain from years of OpenGL and much less experience with

Vulkan.

LunarG 2024 Ecosystem Survey Results 91

d. first time using Vulkan
e. Mainly my very limited knowledge of it, as only recently I started to learn the

Vulkan API and its functionalities.
f. My laziness
g. lack of time as i can only to it in my free time currently

18. Driver quality
a. nvidia's linux drivers

19. I use Vulkan for my hobby projects and in no way professionally, but I tend to read to
spec. for fun and discover interesting things. Like certain extensions/features. When
implementing these features I sometimes come across broken behavior. Like broken
validation layers/driver bugs. It surprises me from time to time no-one has reported
them yet, but it makes me wonder how much people really get out of what Vulkan has to
offer. As a simple example, do people make use of a few shaders that utilize triangles
primitives in a single graphics queue and abstract everything else away? Or do they,
make use of other primitives and compute shaders, with multiple different queues using
extensions/features x, y, z, and rewrite the descriptor set on the GPU timeline? The
former is most likely for a various different reasons, (this is all speculation):

a. - What is taught/online resources;
b. -- the more/quality teaching resources something has the more likely people will

follow that way of programming Vulkan. (Vulkan-samples is a great resource
that counters this point)

c. -- What ain't taught is ill supported, and ill supported things ain't taught.
d. - Time/exploratory learning; Not everyone takes the time or has the time or the

interest to read about the new methods.
e. - Vendor support; Not all vendors support the latest extensions/features,

minimizing the extensions/features you use increases the user base you can
support.

20. I'm working on Vulkan bindings for PHP https://github.com/iggyvolz/vulkan-php
21. Push for native Vulkan integration and support on iOS devices rather than MoltenVK.
22. I'm not sure of the hardware capabilities, but it'd be great if

VK_EXT_mutable_descriptor_type was available on earlier drivers. I don't see a reason
why drivers capable of SM 6.6 with directx couldn't support this, yet on NVIDIA drivers
it's basically RTX+ cards only.

23. is there some way can connect webgpu and vulkan? or release web version vulkan.
24. Just a few words to stress the relevance of the questions put in this survey. I think that

mentioning relatively recent, not yet well-known tooling is particularly clever and should
continue in the next surveys (note: this is the first time I'm answering one).

25. For people developing using bindings in languages that are not C nor C++, it may be
interesting to ask what bindings they use. I know there are several for Rust for example,
but all are unofficial (I think), so their may be interesting information to gather from such
devs too, though I am not sure how much they represent in the community.

LunarG 2024 Ecosystem Survey Results 92

Open-ended Feedback : Thank You
1. The progress of the validation layers are amazing!
2. Keep up the good work
3. Thank you for your hard work. I love vulkan SDK, it makes vulkan development so much

easier.
4. Vulkan, although non-trivial, is a great API. Thank you for making a great SDK that is

portable across platforms for indie video game development.
5. Thank you for your involvement, driving force for Vulkan. Without you Vulkan would not

be the ecosystem it currently is!
6. Thanks for the great work and for the ecosystem, its already very good."
7. When visiting Vulkanised it became more apparent to me what your role is in the whole

ecosystem. I will definitely reach out to you more often and ask feedback of the
challenges we have."

8. Anyway BIG THANKS!!! for improving Vulkan ecosystem."
9. Love the work <3
10. Thank you for all your work on this outstanding SDK!
11. Thanks very much for your service.
12. Great work! I switched from DirectX dev to Vulkan and love it!
13. I believe that tools created by your team are great
14. Thank you for the amazing tools <3
15. I think you are doing a great job with the SDK!
16. With Vulkan 1.3 (or 1.2 and bunch of exts), graphics programming can be fun again!
17. I appreciate the material on the Khronos GitHub repository and I got positive feedback

directly by the authors of the tutorial. Great job!

LunarG 2024 Ecosystem Survey Results 93

	LunarG 2024 Ecosystem Survey Report
	Executive Summary
	Methodology:
	Highlights:
	Potential actions being considered for the year to come

	
	Where did you hear about this survey?
	
	What type of Vulkan developer are you?
	
	How experienced of a Vulkan Developer are you?
	
	Your development is for what type of use case? (check all that apply)
	What are the targets of your Vulkan application? (check all that apply)
	
	Have you released your Vulkan development project for public use?
	
	If you are developing Vulkan applications for the desktop, what is your development environment? (check all that apply)
	
	If you are developing Vulkan applications for Android, what is your OS development environment? (check all that apply)
	
	Do you use the new docs.vulkan.org site?
	
	Do you use the following Vulkan SDKs? (check all that apply)
	
	Which of the following Vulkan layers do you use?
	
	Which of the following Vulkan Tools do you use?
	
	Which of the following libraries do you use for your Vulkan development?
	
	What is your front end for creating SPIR-V? (check all that apply)
	
	From Vulkan-Headers, which do you use for parsing the API? (check all that apply)
	
	Do you use the Vulkan Profiles Toolset?
	
	Which of the Vulkan Profiles toolset tools do you use?
	
	If you are using the Vulkan Profiles Toolset, what are you using them for? (check all that apply)
	
	Which of the Vulkan Profiles provided in the Vulkan SDK do you use? (check all that apply)
	
	Do you use the Khronos Vulkan Validation Layer (VK_LAYER_KHRONOS_validation)?
	
	How often does the performance of the validation layers inhibit effective use of them?
	If you use the Best Practices layers (VK_VALIDATION_FEATURE_ENABLE_BEST_PRACTICES_EXT), which vendors do you select? (check all that apply)
	
	When you get many Validation Layer messages, what do you do? (check all that apply)
	When you think you have found a bug in the Validation Layers, what do you do? (check all that apply)
	Do you use Debug Printf (debugPrintfEXT, GLSL_EXT_debug_printf, VK_VALIDATION_FEATURE_ENABLE_DEBUG_PRINTF_EXT)?
	
	Do you use GPU Assisted Validation (GPU-AV, GPU-Assisted, VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT)
	
	Do you use Synchronization Validation (VK_VALIDATION_FEATURE_ENABLE_SYNCHRONIZATION_VALIDATION_EXT)?
	
	Do you use GFXReconstruct?
	
	Which version of GFXReconstruct do you use? (check all that apply)
	
	If you use GFXReconstruct, rank the following possible new GFXReconstruct features in terms of usefulness for your projects: (1 = Highest, 10 = Lowest)
	
	How satisfied are you with the reliability and quality of GFXReconstruct on desktop GPUs?
	
	How satisfied are you with the reliability and quality of GFXReconstruct on Android?
	
	What improvements or enhancements would you like to have added to GFXReconstruct?
	
	Is Android a target of your application development?
	
	If you believe you have found a Vulkan driver bug on Android, what do you do? (check all that apply)
	
	If you do not report a driver bug that you found on Android, why not? (check all that apply)
	
	When you need to debug a rendering problem on Android, what tool(s) do you use? (check all that apply)
	
	What graphics performance/profiling tools do you use on Android? (check all that apply)
	Do you use MoltenVK?
	
	Rank order the importance of the following Vulkan features being added to MoltenVK (1 = Highest, 9 = Lowest)
	
	List any Vulkan extensions that you would like to see added to MoltenVK

	
	
	Open-Ended Feedback
	
	
	
	Open-ended Feedback : Validation Layer
	
	Open-ended Feedback : Vulkan SDK
	
	Open-ended Feedback : Profiles Toolset
	
	Open-ended Feedback : RenderDoc
	
	Open-ended Feedback : High level Shader Language / Compilers
	
	Open-ended Feedback : Developer Tools
	
	Open-ended Feedback : GPU crashes/hangs
	
	Open-ended Feedback : Android
	
	Open-ended Feedback : MoltenVK
	Open-ended Feedback : Vulkan Ecosystem Documentation
	
	Open-ended Feedback : Vulkan Samples
	
	Open-ended Feedback : Vulkan API
	
	Open-ended Feedback : Other
	Open-ended Feedback : Thank You

