
Using GFXReconstruct for Capture &
Replay with Vulkan and D3D12

1

Brad Grantham
LunarG, Inc.

GFXReconstruct - Agenda

● What is it
● Where to get it
● How to use it
● Pointers for advanced users
● Questions and answers

2

GFXReconstruct - Overview

GFXReconstruct lets a developer examine and replay a program’s captured
graphics commands after a program has been run.

● Capture an application’s graphics live commands
● Replay those commands at any time without the application
● Allows inspection and some transformation of those commands

3

GFXReconstruct - Overview

This is useful for:

● Architecture simulation
● Silicon bringup
● Driver regression testing
● Bug reporting
● Developer investigation

Currently in use by several GPU, chipset, platform vendors

4

GFXReconstruct - Overview

Release packages are available on GitHub:

https://github.com/LunarG/gfxreconstruct/releases

Binaries (without Direct3D) also in the Vulkan SDK:

https://vulkan.lunarg.com/sdk/home

Source code:

https://github.com/LunarG/gfxreconstruct

5

https://github.com/LunarG/gfxreconstruct/releases
https://vulkan.lunarg.com/sdk/home
https://github.com/LunarG/GFXReconstruct

GFXReconstruct - Overview

● Capture graphics commands in a file (aka a “capture file” or “trace file”)
○ Function call inputs and return code and outputs if successful
○ Binary file for fast readback and replay
○ Commands are stored in compressed blocks

● Replay captures by issuing the same commands
● Handful of additional tools to operate on capture files
● C++ libraries, layers, and apps; some Python wrappers
● Linux, Android, Windows
● API-agnostic; Vulkan and Direct3D 12 so far!

6

GFXReconstruct - Capturing A Vulkan Application

Vulkan API layer “libVkLayer_gfxreconstruct.so” or .dll

● Use Vulkan Configurator (VkConfig)
○ or “gfxrecon-capture-vulkan.py”
○ or VK_INSTANCE_LAYERS=VK_LAYER_LUNARG_gfxreconstruct

● Records all core 1.3 Vulkan function calls and many extensions

7

8

9

GFXReconstruct - Capturing Ranges of Frames

● Can also capture ranges of frames
○ By number e.g. GFXRECON_CAPTURE_FRAMES=1,2,10-20
○ Or (on desktop) using a hotkey (e.g. F3)

● All graphics state up to the range is “tracked”
○ Stored in the capture file as state setup

● Conservative
○ Writes all tracked objects to the file at beginning of range
○ Can’t know what future frames will reference

(Works for Vulkan and Direct3D 12)
1
0

Display useful information
about a capture

● Compression
● Frames
● App info
● Device info

1
1

GFXReconstruct - gfxrecon.py info
$ gfxrecon.py info ~/gfxrecon_capture_20220412T075011.gfxr
File info:
 Compression format: LZ4
 Total frames: 50

Application info:
 Application name: vkcube
 Application version: 0
 Engine name: vkcube
 Engine version: 0
 Target API version: 4198400 (1.1.0)

Physical device info:
 Device name: AMD Radeon RX 6700 XT
 Device ID: 0x73df
 Vendor ID: 0x1002
 Driver version: 8388821 (0x8000d5)
 API version: 4206795 (1.3.203)

Device memory allocation info:
[...]

{
 "index": 1,
 "vkFunc": {
 "name": "vkCreateInstance",
 "return": "VK_SUCCESS",
 "args": {
 "pCreateInfo": {
 "sType": "VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO",
 "pNext": null,
 "flags": 1,
 "pApplicationInfo": {
 "sType": "VK_STRUCTURE_TYPE_APPLICATION_INFO",
 "pNext": null,
 "pApplicationName": "vkcube",
[...]

1
2

GFXReconstruct - gfxrecon.py convert

GFXReconstruct - gfxrecon.py replay

Plays graphics function call stream as close to the original as possible

gfxrecon.py replay your-capture-file.gfxr

1
3

GFXReconstruct - gfxrecon.py replay
Vulkan and Direct3D 12 are explicit APIs that expose low-level control of hardware

● GPU-specific memory alignment
● Hardware extensions
● Presentation modes (used to call it “swapbuffers”)
● etc

But it is possible to replay on other drivers, GPUs, vendors (to varying degrees)

● Fix memory alignment and hesp types using “-m”
○ Most likely to succeed is “-m rebind” (completely redo all allocations)

● Can mask off extensions, ignore missing capabilities: “--remove-unsupported”

● Can attempt replay even on different platform with “--wsi”
1
4

GFXReconstruct - gfxrecon.py replay

Some additional options:

● Can also skip allocations that failed in capture with “--sfa”

● Select one of multiple GPUs: “--gpu”

● On Android using Vulkan: “--surface-index”
○ Choose one of multiple captured surfaces to replay

● Save presented images: “--screenshots”, “--screenshot-all”

1
5

GFXReconstruct - Capturing A Direct3D 12 Application

D3D12 interception DLLs

● Included in GFXR Release Packages
(on GitHub)

● Copy DLLs to your app directory
● Set optional environment variables
● Run app and exit normally
● GFXR records a “.gfxr” file

1
6

Check out the page on GFXR and Direct3D 12 on GPUOpen.com!
https://gpuopen.com/learn/amd-lunarg-gfxreconstruct-dx12-dxr/

https://gpuopen.com/learn/amd-lunarg-gfxreconstruct-dx12-dxr/

Useful to replay a capture to show Vulkan valid usage errors

gfxrecon.py replay --validate

1
7

GFXReconstruct - Replay with Vulkan Validation

$ gfxrecon.py replay --validate gfxrecon_capture_20230802T164029.gfxr
[gfxrecon] INFO - Replay has added the following required layers to VkInstanceCreateInfo
when calling vkCreateInstance:
[gfxrecon] INFO - VK_LAYER_KHRONOS_validation
[...]
VUID-VkFenceCreateInfo-sType-sType(ERROR / SPEC): msgNum: 913590280 - Validation Error: [
VUID-VkFenceCreateInfo-sType-sType] Object 0: handle = 0x55c0bb792ca0, type =
VK_OBJECT_TYPE_DEVICE; | MessageID = 0x36744808 | vkCreateFence: parameter
pCreateInfo->sType must be VK_STRUCTURE_TYPE_FENCE_CREATE_INFO. The Vulkan spec
states: sType must be VK_STRUCTURE_TYPE_FENCE_CREATE_INFO
(https://vulkan.lunarg.com/doc/view/1.3.250.1/linux/1.3-extensions/vkspec.html#VUID-VkFenceC
reateInfo-sType-sType)
[...]

GFXReconstruct - With Other Tools

gfxrecon-replay is just a program making graphics function calls

Capture files can be replayed inside other tools!

● RenderDoc
● NVIDIA NSight
● AMD Radeon Graphics Tools
● Etc

1
8

GFXReconstruct - Use with Android

Somewhat similar to desktop

● GFXR capture Vulkan layer is loaded within the target app
● gfxrecon-replay is an app that replays capture files

But Android’s security model is more strict than desktop!

● Need “debuggable” app or rooted device
● Locations of loadable layers and for writing files change frequently

We provide a detailed guide to GFXR on Android

● HOWTO_android.md in the source tree
1
9

Trimmed captures contain all objects created before the start of the trim
range.

For Vulkan and Direct3D captures, optimize:

● Scans for unused resources
● Creates a new capture without unused resources
● Improves replay performance
● Reduces file size

2
0

GFXReconstruct - gfxrecon.py optimize

$ gfxrecon.py optimize trim.gfxr trim.opt.gfxr
Scanning F:/SaschaWillems-Vulkan-Samples/bin/trim.gfxr for unreferenced
resources.
[...]
Resource filtering complete.
 Original file size: 9588217 bytes
 Optimized file size: 6873678 bytes

$ gfxrecon.py replay trim.gfxr
[...] Replay FPS: 1514.922818 fps [...]

$ gfxrecon.py replay trim.opt.gfxr
[...] Replay FPS: 1794.189268 fps [...]

2
1

GFXReconstruct - gfxrecon.py optimize

28% reduction

18% improvement

GFXReconstruct -- Other Tools in the Package

● compress - Change compression format or decompress

● extract - Extract shader binaries for inspection or replacement

2
2

Prefer an SSD - file I/O is often the performance bottleneck

More RAM allows better trimmed capture performance

Some captures can’t be replayed on other GPUs / platforms

● Unavailable extensions, features
● Use too much graphics memory

2
3

GFXReconstruct - Practical Concerns

GFXReconstruct

Components

● CaptureManager, VulkanCaptureManager, D3D12CaptureManager
- deal with API specifics, trimming, misc

● Encoder - serialize API call info and parameters
● FileProcessor - read blocks from a file, decompress and call Decoders
● Decoder - deserialize API call info, call Consumers
● Consumer - take API call info, do something with it

○ E.g. VulkanReplayConsumer
○ E.g. Dx12StatsConsumer

2
4

GFXReconstruct Architecture

Directory structure

● framework/
○ generated/ - generators & generated code is checked in
○ encode/ - capture manager, handwritten capture, state tracking
○ decode/ - file processing, decoding, replay, and other consumers
○ format/ - file format metacommand structs, API call IDs
○ util/ - etc

2
5

GFXReconstruct Source Code

GFXReconstruct

Directory structure - cont.

● tools/ - settings, tool main()s, etc
● layer/ - Vulkan API layer and D3D12 DLL code
● scripts/ - gfxrecon.py, build.py

2
6

GFXReconstruct Source Code

Thanks!

Release packages are available on GitHub:
https://github.com/LunarG/gfxreconstruct/releases

Binaries (without Direct3D) in the Vulkan SDK:
https://vulkan.lunarg.com/sdk/home

Source:
https://github.com/LunarG/GFXReconstruct

https://lunarg.com

info@lunarg.com

2
7

This Presentation

https://github.com/LunarG/gfxreconstruct/releases
https://vulkan.lunarg.com/sdk/home
https://github.com/LunarG/GFXReconstruct
https://lunarg.com
mailto:info@lunarg.com

Vulkan Development in Apple Environments
Wed, Aug 9th, 9:00 - 10:30 am PDT Room - LACC 518B

Presenters -

Bill Hollings, Brenwill Workshop

Richard Wright, LunarG Inc.

More LunarG at SIGGRAPH 2023 -

Vulkan, Forging Ahead
Wed, Aug 9th, 3:00 - 6:00 pm PDT JW Marriott LA, Platinum Salon D

Includes a Presentation by -

Karen Ghavam, LunarG Inc. - Vulkan SDK & Ecosystem Tools

See our Vulkan demos at the LunarG table

during the Networking Event!

2
9

