KHRONOS

<Vu likan.

Explore the Vulkan Loader
and Validation Layers

Google "):

ngplore the Vulkan Loader and Validation Layers

Mark Lobodzinski)3

Senior Engineer
Validation Layers

' Jon Ashburn LUM):

Principal Engineer
~ Vulkan Loader Architect

Courtney Google
Goeltzenleuchter

Principal Engineer

Loader & Validation Layers Architect

Tobin Ehlis Gq gle
Engineer
Validation Layers Lead Engineer

Rolando Caloca W \
Sr. Rendering Engineer |game
Unreal Engine 4 port to Vulkan

Karl Schultz
Principal Engineer NA%
Validation Layers and LunarG SDK

Where to find info...

e LunarG.com (http://www.lunarg.com)
- BoF slides: https://lunarg.com/lunarg-birds-feather-session-siggraph-july-26-2016,

e Khronos Loader and Validation Layers github

- github: https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers
- Loader specification and architecture: https://github.com/KhronosGroup/Vulkan-
LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md

e Khronos Vulkan API

- Vulkan landing page: https://www.khronos.org/vulkan/
- Vulkan forum: https://forums.khronos.org/forumdisplay.php/114-Vulkan-High-
Efficiency-GPU-Graphics-and-Compute

LUNAR
e LunarG Vulkan SDK XCHAN)GE
- Download SDK, report SDK issues, read documentation: https://vulkan.lunarg.com

https://lunarg.com/lunarg-birds-feather-session-siggraph-july-26-2016/
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md
https://www.khronos.org/vulkan/
https://forums.khronos.org/forumdisplay.php/114-Vulkan-High-Efficiency-GPU-Graphics-and-Compute
https://forums.khronos.org/forumdisplay.php/114-Vulkan-High-Efficiency-GPU-Graphics-and-Compute
https://forums.khronos.org/forumdisplay.php/114-Vulkan-High-Efficiency-GPU-Graphics-and-Compute
https://vulkan.lunarg.com

Agenda

Vulkan Loader

Vulkan Validation Layers

Epic Games: Vulkan on Unreal Engine 4 - Validation Layers

.Q&A

KHRCONOS

Vulkan Loader

KHRCONOS

Vulkan Loader - Goals
e Validation
e Plug-n-play experience

e Extensible

Vulkan Loader - Goals

Layers
- Vulkan has been designed to support plug-in layers
- The loader is the consistent method for enabling layers
- Same layers for Windows, Linux and Android

Plug-n-play experience

Extensible

Robust API validation in layer(s), not drivers

No perf impact when not used. That is, there is no test in the code to see if validation should

be done or not. This also applies to more indirect performance impact, such as there is no
validation code loaded into the apps process space.

Same validation for all platforms (Windows, Linux, Android)

Vulkan Loader - Goals

e Layers
- Vulkan has been designed to support plug-in layers
- The loader is the consistent method for enabling layers
- Same layers for Windows, Linux and Android

¢ Plug-n-play experience
- Support multiple Vulkan devices on desktop

e Extensible

. Multiple drivers can live on a system and an application can select which to use without
changing the system configuration. Avoids issues seen today with trying to use different
drivers / graphics cards on a Linux system.

Vulkan Loader - Goals

e Layers
- Vulkan has been designed to support plug-in layers
- The loader is the consistent method for enabling layers
- Same layers for Windows, Linux and Android

¢ Plug-n-play experience
- Support multiple Vulkan devices on desktop

e Extensible
- Layers can extend/enhance the API
- Performance profiling
- Image capture for image-based regression testing
- API Dump
- Layers or drivers can support extensions

° Layers provide mechanism to extend the APl and/or provide features without impacting the

application or driver. E.g.

performance profiling

image capture for image-based regression testing

Tracing / APl Dump (output Vulkan calls & parameters for debugging)
Layers or drivers can support extensions

See LoaderAndLayerInterface.md in Github for details.

Vulkan Loader - Windows & Linux

e Open source
- Developed by LunarG, owned by Khronos

e JSON manifest files

developed by LunarG, owned by Khronos
Github https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers

Vulkan Loader - Windows & Linux

e Open source
- Developed by LunarG, owned by Khronos

e JSON manifest files
- Encode library details in json files
- Security, lower system impact

° developed by LunarG, owned by Khronos
° Github https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers

Vulkan Loader - Windows & Linux

e Open source
- Developed by LunarG, owned by Khronos

e JSON manifest files
- Encode library details in json files
- Security, lower system impact

° developed by LunarG, owned by Khronos
. Github https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers
° Dynamic trampoline code

o For unknown device extensions. No JIT

o Dispatch destination determined at CreateDevice

https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers

Vulkan Loader - Windows & Linux

e Search paths for driver and layer json manifest files
- Linux: /etc/vulkan/*, /usr/share/vulkan/*, $HOME/.local/share/vulkan/*
- Windows: HKEY_LOCAL_MACHINE\SOFTWARE\Khronos\Vulkan*
- Environment override: VK_LAYER_PATH and VK_ICD_FILENAMES

e Implicit layers

e Other useful environment variables

Linux: /etc/vulkan/*, /usr/share/vulkan/*, $HOME/.local/share/vulkan/*

Windows: registry HKEY_LOCAL_MACHINE\SOFTWARE\Khronos\Vulkan*
environment variables can be used to override these search paths (VK_LAYER_PATH
and VK_ICD_FILENAMES)

ROUP

NOS

KHRO

Vulkan Loader - Windows & Linux

e Search paths for driver and layer json manifest files
- Linux: /etc/vulkan/*, /usr/share/vulkan/*, $HOME/.local/share/vulkan/*
- Windows: registry HKEY_LOCAL_MACHINE\SOFTWARE\Khronos\Vulkan*
- Environment override VK_LAYER_PATH and VK_ICD_FILENAMES

e Implicit layers
- Automatically enabled by the loader
- Disable if needed
- Limited environments

e Other useful environment variables

platform installed layers such as the Steam overlay

enabled automatically by the loader rather than by the app

for security each implicit layer must have a environment variable disable
environment variable for enabling in limited environments within a platform

Vulkan Loader - Windows & Linux

e Search paths for driver and layer json manifest files
- Linux: /etc/vulkan/*, /usr/share/vulkan/*, $HOME/.local/share/vulkan/*
- Windows: registry HKEY_LOCAL_MACHINE\SOFTWARE\Khronos\Vulkan*
- Environment override VK_LAYER_PATH and VK_ICD_FILENAMES

e Implicit layers
- Steam overlay
- Automatically enabled by the loader
- Disable if needed
- Limited environments

e Other useful environment variables
- VK_INSTANCE_LAYERS= layers to be enabled at Createlnstance
- VK_LOADER_DEBUG= (all, error, info, warn, debug)

VK_INSTANCE_LAYERS= a list of layers to be enabled at Createlnstance
VK_LOADER_DEBUG= (all, error, info, warn, debug) log loader messages to (debug)
console

Vulkan Loader - Android

e Same loader-layer interface, but own code

- See LoaderAndLayerInterface.md for details

Nougat / Android-24

Android loader uses same interfaces, but own code base
o LoaderAndLayerinterface.md
o] Does not use layer json files, layers must implement introspection functions
(vkEnumeratelnstancelLayerProperties, vkEnumeratelnstanceExtensionProperties,
etc.)

Vulkan Loader - Android

e Same loader-layer interface, but own code

See LoaderAndLayerInterface.md for details

* Nougat / Android-24

Includes Vulkan headers and vulkan.so library to link against
Android loader available on all Nougat devices

Some support on Marshmallow (e.g. NVIDIA Shield Tablet and Shield
Console, Samsung S7)

Use vkEnumeratePhysicalDevices to determine if Vulkan is supported
Layer source & binaries included with Android NDK v12 and newer

Details: https://developer.android.com/ndk/quides/graphics/index.html

° TODO: Link to Android Vulkan page?

https://developer.android.com/ndk/guides/graphics/index.html

Vulkan Loader - Android

e Layers
- No json, layers must implement introspection functions (e.g.
vkEnumeratelnstanceLayerProperties)
- Same layer source as Windows/Linux
- No implicit layers.
- Latest layer source on Github

e Applications own Layers

Vulkan Loader - Android

e Layers
- No json, layers must implement introspection functions (e.g.
vkEnumeratelnstancelLayerProperties)
- Same layer source as Windows/Linux
- No implicit layers.
- Latest layer source on Github

e Applications own Layers
- Application must include layers in apk
- No “"WK_LAYER_LUNARG_standard_validation”
- Debuggable application can enumerate and enable layers located in
/data/local/vulkan/debug.
- Check logcat for loader messages

KHRONOS

Vulkan Validation Layers

NOS

KHRO

Validation Layers - Overview & future

Vulkan App

Vulkan Application

s [& threading] é core_validation |.—(?) .‘ threading
o ©
1 b~} .
5 = Single layer
<=r. [Q é* parameter_validation] S presgentegi/ to o é
g < 'EI loader o 3
k-] 2 object_tracker] LN descriptor sets =
g [@ E m Stores shared T
3 o E state o
= O |
9 AnRE . c
o 4 Dispatch =
£ 4 idati i (— checks to =
3 | core_validation § o shaders]
b 3 separate %
) modules
o o
- CHNCTCN > ¢
s S
Pl ey % \ P
[Gfx Driver] Selective enable w/ levels

The Validation layers are used during app development to flag errors in the
application’s use of the API. Prior to releasing an application, the app should
be “validation clean” meaning that it runs without triggering any errors. In
release mode the validation layers will not be enabled so they have no
performance impact for a release app.

e Threading -- Checks that objects are not violating threading restrictions

e Parameter Validation -- Stateless API parameter validation - valid
usage, validity, device limits, etc.

e Object Tracker -- Validates objects for correctness, proper creation,
and lifetime

e Image -- Validates items related to image generation and usage

e Core Validation -- Draw_state, shader checker, mem_tracker,
device_limits. Main layer for validation

e Swapchain -- Validates swapchain-related API calls

e Unique Objects -- Remaps object handles to enforce that they are
unique

Layer ordering requires threading at the top of the chain and unique_objects at
the bottom. This must be explicitly enabled when requesting layers on Android.
On desktop the alternative, single meta-layer
“VK_LAYER_LUNARG_standard_validation” can be used.

In the future we’d like to move to a single layer that handles all of the top-level
intercepts. This layer then dispatches work for checks to specific functional

domain modules. These modules will be able to be enabled and disabled as a
whole using “level” flags. This will allow for more fine-grained control so that
early on in app development, all levels can be turned on, then, as sections of
code solidify those areas of validation can be selectively disabled to improve
performance.

Also, by consolidating to single layer it will simplify enabling layers for app
developers going forward in that the list of layers will never change.
Developers who are interested in the fine-grained control of levels can use that
capability, while other developers can just run with all levels enabled. The
checks may also be divided into 2-3 “meta-levels” that capture broad swaths of
validation capability.

Validation Layers - Usage

¢ Validation Layer Output
- Debug Callbacks

- Leverage layer settings file

- Debug callbacks return true/false to continue with subject API call

Quickly hit on three areas, callbacks, output control, and message spam

Validation Layers - Usage

¢ Validation Layer Output
- Debug Callbacks
- Temp
- Default
- Application

Leverage layer settings file

Debug callbacks return true/false to continue with subject API call

Temp callbacks -- for enabling debug output during Instance creation before instance callbacks are
available. Example: cube demo.

default callbacks -- If no user callbacks are created, default callbacks will output to
stdout/outputdebugstring on Windows, stdout on Linux

app callback -- complete control of what happens -- skip_call

Debug callbacks can continue with execution of the Vulkan API function by returning false or bail out
by returning true

Validation Layers - Usage

¢ Validation Layer Output
- Debug Callbacks
- Temp
- Default
- Application

- Leverage layer settings file
- Set level info, warn, error, perf_warn
- Output to VK_DBG_LAYER_ACTION_LOG_MSG or
VK_DBG_LAYER_ACTION_DEBUG_OUTPUT

- Debug callbacks return true/false to continue with subject API call

Settings file must go in dir with executable

Pick levels (info, warn, error, etc), use combinations

Control Output -- LOG_MSG to go to a file or stdout (if no file), DEBUG_OUTPUT to use
OutputDebugString in Windows

Validation Layers - Usage

¢ Validation Layer Output
- Debug Callbacks
- Temp
- Default
- Application

- Leverage layer settings file
- Set level info, warn, error, perf_warn
- Output to VK_DBG_LAYER_ACTION_LOG_MSG or
VK_DBG_LAYER_ACTION_DEBUG_OUTPUT

- Debug callbacks return true/false to continue with subject API call

Filter by type, location (line number), layer, string match.

Debug callbacks can continue with execution of the Vulkan API function by returning false or bail out
by returning true

Validation Layers - Usage
+ Best Practices

- Use standard_validation when possible

- Address ERRORs immediately - errors result in undefined behavior and often to
crashes

- WARNING does not imply incorrect behavior

- The api_dump layer is your friend

- Debug layer loading issues with VK_LOADER_DEBUG=all

LAYER DEPENDENCIES: Examples -- unique_objects, parameter validation, object tracker,
etc.
e Order does matter. unique_objects must be closest to the driver
e threading, parameter_validation and object_tracker need to go early in the chain to
prevent invalid references, etc.
° Easiest way (on desktop) is to use the standard_validation meta-layer. On mobile,
use the list referenced in vk_validation_layer_details.md or layers.html
° For performance, some layers can be disabled temporarily -- threading, uniq

ERRORS can cascade to cause further validation failures

WARNING is a signal to make sure you know what you are doing, NOT a failure.

API-dump: Like many of us used to do with APITrace, we can follow execution and
dependencies through time. EG., Layout Transitions -- Many reports of incorrect validation -
most turn out to be application-side issues. API-dump is excellent for this.

VK_LOADER_DEBUG=all useful for validating that layers are getting loaded correctly

Validation Layers - Status

e Activity
- For SDKs 1.0.1 through 1.0.21 (8 SDKs over about 6 months):
- 1450+ commits
- 222+ Github and 180+ LunarXchange issues closed

o Coverage

Validation layers are a very active area of development in the Vulkan ecosystem.

There have been a lot of Github issues filed

Good news is that there have been a lot of commits to fix the issues.

The fixes are all in GitHub.

Fixes also made available over 8 SDKs since Vulkan went public about 6 months ago.

KEY message is that you should always get the latest validation layers because they are improving and evolving rapidly.

Validation Layers - Status

e Activity
- For SDKs 1.0.1 through 1.0.21 (8 SDKs over ~ 6 months):
- 1450+ commits
- 222+ Github and 180+ LunarXchange issues resolved

o Coverage
- All areas of the spec have coverage - ongoing work in thinner
areas
- Valid usage coverage is in the 60-70% range at a minimum
- Areas needing additional attention:
- Compute

- Sparse resources
- Compressed format validation

It is pretty tricky to evaluate coverage.

There is some coverage over the entire spec.

But some areas need deeper and more detailed coverage.
There are a few areas that especially need additional work

How You Can Help: submit issues

e For GitHub issues for both the loader and layers
- Provide test case for issue
- Pull requests preferred!
- See CONTRIBUTING file in the GitHub repo for details
- https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers

¢ For validation layer issues
- Submit issues for false positives as well as for missing validation checks

* For SDK-specific issues
- Report issues with SDK or issues related to loader and layers
- Ask questions
- Submit to LunarXchange @ https://vulkan.lunarg.com

Best place to report problems is the LoaderAndValidationLayers GitHub

Test cases are great!

If you want to dig into the Validation Layer code, submit a patch via a pull request
The LunarXchange web site is also a good place to report problems.

KHRCONOS

Vulkan on UE4:
Validation Layers

GROUP

KHRCONOS

Vulkan on UE4: Validation Layers

e What to expect
e Be sure to check out tomorrow’s talk!
- Will explain how UE4 works with Vulkan and the Protostar
demo

Vulkan on UE4: Key Learnings

e Use the Validation Layers!
- To find bugs:
- Try to draw using deleted sampler
- Present using uninitialized image/backbuffer
- To diagnose cross-platform issues:
- Missing resource transitions/barriers on images
- Memory leaks
- Bad bits/properties
- To check for performance issues:
- Writing to disabled attachments
o Vital for getting UE4 up & running!

G R

NOS

KHRO

Invalid VkSampler Object Ox<handle>

Vulkan on UE4: Validations

e Draw using deleted Sampler
- VK ERROR: [OBJTRACK] Code 4 : Invalid VkSampler Object 0x443

Vulkan on UE4: Validations

¢ Present with uninitialized image/backbuffer
- VK ERROR: [MEM] Code 12 : vkQueuePresentKHR(): Cannot read invalid
swapchain image 0x42a, please fill the memory before using.

layouts

Bad image

Vulkan on UE4

Vulkan on UE4: Missing barriers

NOS

G R

KHROS

KHRCONOS

Vulkan on UE4: Missing barriers

Vulkan on UE4: Validations

¢ Memory leak
- VK ERROR: [OBJTRACK] Code 3 : OBJ ERROR :
VK_DEBUG_REPORT_OBIJECT_TYPE_SHADER_MODULE_EXT object
0x43d has not been destroyed.

Vulkan on UE4: Validations

¢ Cross platform potential issues
- VK ERROR: [DS] Code 27 : vkUpdateDescriptorsSets() failed write update

validation for Descriptor Set 0x17de with error: Write update to
descriptor in set 00000000000017DE binding #1 failed with error
message: Attempted write update to combined image sampler descriptor
failed due to: ImageView (00000000000017AC) has layout
VK_IMAGE_LAYOUT_GENERAL and is using depth/stencil image of
format VK_FORMAT_D24_UNORM_S8_UINT but it has both STENCIL and
DEPTH aspects set, which is illegal. When using a depth/stencil
image in a descriptor set, please only set either
VK_IMAGE_ASPECT_DEPTH_BIT or
VK_IMAGE_ASPECT_STENCIL_BIT depending on whether it will
be used for depth reads or stencil reads respectively.

Vulkan on UE4: Validations

Cross platform potential issues
- VK ERROR: [DS] Code 27 : vkUpdateDescriptorsSets() failed write update

validation for Descriptor Set 0x17de [...]

UE4Editor-VulkanRHTI-Win64-Debug.dll!DebugReportFunction Line &5 C++

VkLayer core validation.dll!debug report log msg Line 122 C++

VkLayer core validation.dll!log msg Line 360 C++

VkLayer core_validation.dll!cvdescriptorset::ValidateUpdateDescriptorSets Line 868 C++

VkLaver core validation.dll!core walidation::PreCallValidateUpdateDescriptorSets Line 6087 C++
VkLayer core_ validation.dll!core_walidation::UpdateDescriptorSets Line 6103 C++

VkLaver object_ tracker.dll!object tracker::UpdateDescriptorSets Line 3336 C++

VkLayer device limits.dll!device limits::UpdateDescriptorSets Line 588 C++

VkLayer parameter validation.dll!parameter walidation::UpdateDescriptorSets Line 3508 C++
VkLayer threading.dll!threading::UpdateDescriptorSets Line 1323 C++
UE4Editor-VulkanRHI-Win&4-Debug.dll!FVulkanBoundShaderState: :UpdateDescriptorSets Line 1216 C4+4
UE4Editor-VulkanRHI-Win&4-Debug.dll!FVulkanPendingState: :PrepareDraw Line 588 C++
UE4Editor-VulkanRHI-Win64-Debug.dll!FVulkanCommandListContext: i:RHIDrawlndexedPrimitive Line 556 C++
UE4Editor-RHI-Win&4-Debug.dll! FRHICommandDrawIndexedPrimitive: :Execute Line 153 C++

G R

NOS

KHRO

Vulkan on UE4: Layer Performance

e But:
- Be wary of runtime performance cost
- Selectively enable validation layers:
- Start with all the layers:
- VK_LAYER_LUNARG_standard_validation
- At minimum keep:
- VK_LAYER_LUNARG_parameter_validation
- Mem leaks:
- VK_LAYER_LUNARG_object_tracker

KHRCONOS

Vulkan on UE4: All Validation Layers On

KHRCONOS

Vulkan on UE4: No Validation Layers

NOS

G R

KHRO

Vulkan on UE4: Layer Performance

e In this sample (x64 optimized)
- ~80 draw calls
- Draw call time: 3.14ms -> 0.26ms
- vkUpdateDescriptorSets: 0.81ms ->0.02ms
- vkCmdBindPipeline and BindDescriptorSets: 1.11ms->0.
05ms

NOS

G R

KHRO

Vulkan on UE4: Key Learnings

e Step into Validation Layers source code!
- Immensely useful to find out *why* it's failing
- Even after reading the spec, it might not be clear *how*
it's supposed to work, so the source will guide you on the
how
e Continuously improving
- Every SDK has had more information added and catches
more error/perf cases
e But:
- All software has bugs :)
- Make sure a new warning is not a bug in the validation
layer itself!

Vulkan on UE4

¢ But wait, there’s more!
- With great power comes more complexity!
- Layer usage is non-negotiable :)
- Having a second machine is useful as sometimes it *is* a
driver issue...

Vulkan on UE4: Sad Trombone

Your PC ran into a problem and needs to restart. We're just

collecting some error info, and then we'll restart for you. (61%
complete)

If you'd like to know more, you can search online later for this error: PAGE_FAULT_IN_NONPAGED_ AREA (dxgmms2.sys)

Vulkan on UE4

¢ Finally...
- Write your own layers!
- Report bugs!
- Contribute!

e Thanks!

NOS

G R

KHRO

Where to find info...

e LunarG.com (http://www.lunarg.com)
- BoF slides: https://lunarg.com/lunarg-birds-feather-session-siggraph-july-26-2016,

e Khronos Loader and Validation Layers github

- github: https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers
- Loader specification and architecture: https://github.com/KhronosGroup/Vulkan-
LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md

e Khronos Vulkan API

- Vulkan landing page: https://www.khronos.org/vulkan/
- Vulkan forum: https://forums.khronos.org/forumdisplay.php/114-Vulkan-High-
Efficiency-GPU-Graphics-and-Compute

LUNAR
e LunarG Vulkan SDK XCHAN)GE
- Download SDK, report SDK issues, read documentation: https://vulkan.lunarg.com

https://lunarg.com/lunarg-birds-feather-session-siggraph-july-26-2016/
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md
https://www.khronos.org/vulkan/
https://forums.khronos.org/forumdisplay.php/114-Vulkan-High-Efficiency-GPU-Graphics-and-Compute
https://forums.khronos.org/forumdisplay.php/114-Vulkan-High-Efficiency-GPU-Graphics-and-Compute
https://forums.khronos.org/forumdisplay.php/114-Vulkan-High-Efficiency-GPU-Graphics-and-Compute
https://vulkan.lunarg.com

KHRCONOS

BACKUP
SLIDES

12)

13)

QUESTIONS

If | was worried about perf with layers enabled, what is the minimum validation you would recommend?
What could cause my application to work when layers are enabled, but fail when layers are disabled?
(unique objects, threading locking, bugs in layers may hide incorrect behavior...)

Where can we find info on suggested behaviours to consider when creating a new layer? (i.e. no wrapping,
continue down the call-chain, loader and layer interface guide, look at existing layers, ...)

Can | write a layer and get it added to Android? (common layer open source ecosystem, contribute and ends
up on all platforms including Android if you did a good job)

What if | wanted to insert my own layer in the middle of the standard validation layers?

What happened to device layers?

Why isn’t the loader owned by the OS like it is on OpenGL? (MS doesn’t do this....)

Can | write my own loader? (yes, but why?)

Where is the specification for the layers? (no formal spec, look at validation layer implementation, see
loader-layer interface document in the SDK)

Should there be formal spec definition of validation cases? (spec describes correct behavior. many many
cases for incorrect behavior and almost impossible to specify)

What are the most important validation tasks going fwd? (coverage of valid usage cases, performance, code
clean up)

Why does performance take such a hit with my multi-threaded app when | turn on validation? Plans to
improve? (validation is complex, many un-optimized locks, work is ongoing to improve)

Can a Vulkan application run on Android Marshmallow?

Vulkan Loader - Extensions

Instance Extensions

Instance extensions are intended to cover / affect all Vulkan devices, layers,
etc. Current instance extensions all use different aggregation mechanisms that
are implemented inside the loader. We expect future instance extensions to
likewise require specific loader support and recommend developers to avoid
them if possible.

Device Extensions
Device extensions are implemented in drivers and/or layers and shouldn’t
require specific loader support.

